• Title/Summary/Keyword: feature integration

Search Result 245, Processing Time 0.029 seconds

Parametric Design System Basedon Design Unit and Configuration Design Method (구성 설계방법과 설계유니트를 이용한 파라메트릭 설계 시스템)

  • 명세현;한순흥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.702-706
    • /
    • 1995
  • Integration of CAM and CAM information is important in the CIM era. For a CIM system, the feature representation can be a solution to the integration of product model data. These are geometry feature, functional feature, and manufacturing feature in the feature context. This paper proposes a framework to integrate the configuration design method, parametric modeling and the feature modeling method. The concept of design unit which is one level higher than functional feature and parametric modeling concept with functional features have been proposed.

  • PDF

Enhancement of CAD Model Interoperability Based on Feature Ontology

  • Lee Yoonsook;Cheon Sang-Uk;Han Sanghung
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.3
    • /
    • pp.33-42
    • /
    • 2005
  • As the networks connect the world, enterprises tend to move manufacturing activities into virtual spaces. Since different software applications use different data terminology, it becomes a problem to interoperate, interchange, and manage electronic data among heterogeneous systems. It is said that approximately one billion dollar has been being spent yearly in USA for product data exchange and interoperability. As commercial CAD systems have brought in the concept of design feature for the sake of interoperability, terminologies of design features need to be harmonized. In order to define design feature terminology for integration, knowledge about feature definitions of different CAD systems should be considered. STEP standard have attempted to solve this problem, but it defines only syntactic data representation so that semantic data integration is not possible. This paper proposes a methodology for integrating modeling features of CAD systems. We utilize the ontology concept to build a data model of design features which can be a semantic standard of feature definitions of CAD systems. Using feature ontology, we implement an integrated virtual database and a simple system which searches and edits design features in a semantic way.

Building Feature Ontology for CAD System Interoperability (CAD 시스템 간의 상호 운용성을 위한 설계 특징형상의 온톨로지 구축)

  • 이윤숙;천상욱;한순흥
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.2
    • /
    • pp.167-174
    • /
    • 2004
  • As the networks connect the world, enterprises tend to move manufacturing activities into virtual spaces. Since different applications use different data terminology, it becomes a problem to interoperate, interchange, and manage electronic data among different systems. According to RTI, approximately one billion dollar has been being spent yearly for product data exchange and interoperability. As commercial CAD systems have brought in the concept of design feature for the sake of interoperability, terminologies of design feature need to be harmonized. In order to define design feature terminology for integration, knowledge about feature definitions of different CAD systems should be considered. STEP (Standard for the Exchange of Product model data) have attempted to solve this problem, but it defines only syntactic data representation so that semantic data integration is unattainable. In this paper, we utilize the ontology concept to build a data model of design feature which can be a semantic standard of feature definitions of CAD systems. Using feature ontology, we implement an integrated virtual database and a simple system which searches and edits design features in a semantic way. This paper proposes a methodology for integrating modeling features of CAD systems.

Comparative Analysis of Building Models to Develop a Generic Indoor Feature Model

  • Kim, Misun;Choi, Hyun-Sang;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.297-311
    • /
    • 2021
  • Around the world, there is an increasing interest in Digital Twin cities. Although geospatial data is critical for building a digital twin city, currently-established spatial data cannot be used directly for its implementation. Integration of geospatial data is vital in order to construct and simulate the virtual space. Existing studies for data integration have focused on data transformation. The conversion method is fundamental and convenient, but the information loss during this process remains a limitation. With this, standardization of the data model is an approach to solve the integration problem while hurdling conversion limitations. However, the standardization within indoor space data models is still insufficient compared to 3D building and city models. Therefore, in this study, we present a comparative analysis of data models commonly used in indoor space modeling as a basis for establishing a generic indoor space feature model. By comparing five models of IFC (Industry Foundation Classes), CityGML (City Geographic Markup Language), AIIM (ArcGIS Indoors Information Model), IMDF (Indoor Mapping Data Format), and OmniClass, we identify essential elements for modeling indoor space and the feature classes commonly included in the models. The proposed generic model can serve as a basis for developing further indoor feature models through specifying minimum required structure and feature classes.

Image Retrieval Based on the Weighted and Regional Integration of CNN Features

  • Liao, Kaiyang;Fan, Bing;Zheng, Yuanlin;Lin, Guangfeng;Cao, Congjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.894-907
    • /
    • 2022
  • The features extracted by convolutional neural networks are more descriptive of images than traditional features, and their convolutional layers are more suitable for retrieving images than are fully connected layers. The convolutional layer features will consume considerable time and memory if used directly to match an image. Therefore, this paper proposes a feature weighting and region integration method for convolutional layer features to form global feature vectors and subsequently use them for image matching. First, the 3D feature of the last convolutional layer is extracted, and the convolutional feature is subsequently weighted again to highlight the edge information and position information of the image. Next, we integrate several regional eigenvectors that are processed by sliding windows into a global eigenvector. Finally, the initial ranking of the retrieval is obtained by measuring the similarity of the query image and the test image using the cosine distance, and the final mean Average Precision (mAP) is obtained by using the extended query method for rearrangement. We conduct experiments using the Oxford5k and Paris6k datasets and their extended datasets, Paris106k and Oxford105k. These experimental results indicate that the global feature extracted by the new method can better describe an image.

A Fractional Integration Analysis on Daily FX Implied Volatility: Long Memory Feature and Structural Changes

  • Han, Young-Wook
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.2
    • /
    • pp.23-37
    • /
    • 2022
  • Purpose - The purpose of this paper is to analyze the dynamic factors of the daily FX implied volatility based on the fractional integration methods focusing on long memory feature and structural changes. Design/methodology/approach - This paper uses the daily FX implied volatility data of the EUR-USD and the JPY-USD exchange rates. For the fractional integration analysis, this paper first applies the basic ARFIMA-FIGARCH model and the Local Whittle method to explore the long memory feature in the implied volatility series. Then, this paper employs the Adaptive-ARFIMA-Adaptive-FIGARCH model with a flexible Fourier form to allow for the structural changes with the long memory feature in the implied volatility series. Findings - This paper finds statistical evidence of the long memory feature in the first two moments of the implied volatility series. And, this paper shows that the structural changes appear to be an important factor and that neglecting the structural changes may lead to an upward bias in the long memory feature of the implied volatility series. Research implications or Originality - The implied volatility has widely been believed to be the market's best forecast regarding the future volatility in FX markets, and modeling the evolution of the implied volatility is quite important as it has clear implications for the behavior of the exchange rates in FX markets. The Adaptive-ARFIMA-Adaptive-FIGARCH model could be an excellent description for the FX implied volatility series

Machining Feature Database for CAD/CAPP Integration in Mold Die Manufaturing (사출 금형의 CAD/CAPP 통합을 위한 가공 형상 데이터베이스)

  • 노형민;이진환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.259-266
    • /
    • 1992
  • For CAD/CAPP integration, part information on not only geometry but also machining characteristics should be delivered and commonly used between designers and process planners. In this study, the machining features, as linking factors of the integration, are represented as the combination of functional features and atomic features and grouped into a hierarchical database. And the feature based modelling approach is used by generating information on the machining features in design stage. These features are drawn by analyzing real decision rules of process planners. The database using the machining features is built and used for application modules of process planning, operation planning and standard time estimation.

A New Shape Adaptation Scheme to Affine Invariant Detector

  • Liu, Congxin;Yang, Jie;Zhou, Yue;Feng, Deying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1253-1272
    • /
    • 2010
  • In this paper, we propose a new affine shape adaptation scheme for the affine invariant feature detector, in which the convergence stability is still an opening problem. This paper examines the relation between the integration scale matrix of next iteration and the current second moment matrix and finds that the convergence stability of the method can be improved by adjusting the relation between the two matrices instead of keeping them always proportional as proposed by previous methods. By estimating and updating the shape of the integration kernel and differentiation kernel in each iteration based on the anisotropy of the current second moment matrix, we propose a coarse-to-fine affine shape adaptation scheme which is able to adjust the pace of convergence and enable the process to converge smoothly. The feature matching experiments demonstrate that the proposed approach obtains an improvement in convergence ratio and repeatability compared with the current schemes with relatively fixed integration kernel.

A Study on the relations among the Feature, Function, and Manufacturing Process to integrate the Part Design and Process Planning in the Early Design Stage. (제품개발 초기단계의 제품설계와 공정설계의 통합을 위한 특징형상과 의도기능 및 가공 공정간의 상관 관계에 관한 연구)

  • 임진승;김용세
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.540-545
    • /
    • 2002
  • The tight integration of the part design and process planning is very effective to high quality product development and cost effective manufacturing. Moreover, the integration in the early design stage, that is, the integration of the conceptual design and the conceptual process planning may take a big impact with the forecasting the alternative of the design and manufacturing. In this paper, the real field parts are studied about the relations among the Feature, Function, and Manufacturing Process taking the style of reverse engineering method, to found the base of the systematic computer system for the integrated product design and manufacturing process planning.

  • PDF

Standard Operation Time Estimation Using Features in Mold Die Manufacturing (특징형상을 사용한 사출금형 표준 가공공수계산)

  • 이충수;노형민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.223-231
    • /
    • 1994
  • When manufacturing mold dies, an operation sheet is required for each part of the mold dies. The consistent estimation of standard operation time in the operation sheet is difficult, because the estimation is mainly based on subjective judgement. In order to resolve it, concept of feature is introduced in this study. For CAD/CAPP integration, feature technology is being implemented to represent geometrical and technological information of part drawings. A feature database has already been designed, and then used to generate data for process and operation planning modules. Related to this former research, standard operation time is calculated using the feature information and tables used in a real factory.