• Title/Summary/Keyword: feature generation

Search Result 615, Processing Time 0.032 seconds

Automatic Tagging Scheme for Plural Faces (다중 얼굴 태깅 자동화)

  • Lee, Chung-Yeon;Lee, Jae-Dong;Chin, Seong-Ah
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.11-21
    • /
    • 2010
  • To aim at improving performance and reflecting user's needs of retrieval, the number of researches has been actively conducted in recent year as the quantity of information and generation of the web pages exceedingly increase. One of alternative approaches can be a tagging system. It makes users be able to provide a representation of metadata including writings, pictures, and movies etc. called tag and be convenient in use of retrieval of internet resources. Tags similar to keywords play a critical role in maintaining target pages. However, they still needs time consuming labors to annotate tags, which sometimes are found to be a hinderance caused by overuse of tagging. In this paper, we present an automatic tagging scheme for a solution of current tagging system conveying drawbacks and inconveniences. To realize the approach, face recognition-based tagging system on SNS is proposed by building a face area detection procedure, linear-based classification and boosting algorithm. The proposed novel approach of tagging service can increase possibilities that utilized SNS more efficiently. Experimental results and performance analysis are shown as well.

Studies on the Combustion of Anthracite (I). Combustion of Carbon Monoxide and the Furface (無燃炭 燃燒에 關한 硏究 (第 1 報). 一酸化炭素 燃燒反應 및 燃燒裝置)

  • Shin Byoung Sik;Shin Sei Kun
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.3
    • /
    • pp.186-192
    • /
    • 1975
  • In the course of anthracite briquet combustion, air draft is usually controlled to continue burning of definite amount of briquet in the conventional hollow clay cylinder with air inlet hole open for given time, so that a large amount of CO tends to be produced. Therefore, it is necessary to establish an improved combustion process to depress the yielding rate of CO and for this purpose, we performed a basic experiment in which combustion rate of CO was measured in the mixture of $N_2, O_2 $and CO gas with or without the presence charcoal at the various temperature. The observed results showed that the burning temperature of CO is about 680${\sim}700^{\circ}C$, further burning rate of it was increased with increasing the amount of draft. From these facts, longer combustion time and low CO generation are thus contradictory to each other and it has been long desired to make those two compatible somehow. The purpose of the present investigation lies in designing an effective new briquet stove to meet the above requirements. The essential feature of the new briquet stove consisted in the use of two hollow iron cylinders with different inside diameter. A cylindrical air jacket thus formed served as a path through which small amount of secondary air run from the bottom of the stove to the upper vent holes. Heat exchange occurred between the upgoing secondary air and the burning briquet, which lowered the combustion temperature of the briquet. The results observed were selfevident as anticipated. It was confirmed that the combustion time was increased tolerably due to the heat loss from the combustion zone and that CO in the flue gas was reoxidized at the upper portion of the stove by the upgoing hot secondary air. By this reoxidation reaction the concentration of CO in the flue gas was found to be about 1/20 of that in case the conventional clay cylinder was used as briquet jacket.

  • PDF

Extragalactic Sciences from SPICA/FPC-S

  • Jeong, Woong-Seob;Matsumoto, Toshio;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Tsumura, Kohji;Tanaka, Masayuki;Shimonishi, Takashi;Lee, Dae-Hee;Pyo, Jeonghyun;Park, Sung-Joon;Moon, Bongkon;Park, Kwijong;Park, Youngsik;Han, Wonyong;Nam, Ukwon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.36.2-36.2
    • /
    • 2013
  • The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) project is a next-generation infrared space telescope optimized for mid- and far-infrared observation with a cryogenically cooled 3m-class telescope. The focal plane instruments onboard SPICA will enable us to resolve many astronomical key issues from the formation and evolution of galaxies to the planetary formation. The FPC-S (Focal Plane Camera - Sciecne) is a near-infrared instrument proposed by Korea as an international collaboration. Owing to the capability of both low-resolution imaging spectroscopy and wide-band imaging with a field of view of $5^{\prime}{\times}5^{\prime}$, it has large throughput as well as high sensitivity for diffuse light compared with JWST. In order to strengthen advantages of the FPC-S, we propose the studies of probing population III stars by the measurement of cosmic near-infrared background radiation and the star formation history at high redshift by the discoveries of active star-forming galaxies. In addition to the major scientific targets, to survey large area opens a new parameter space to investigate the deep Universe. The good survey capability in the parallel imaging mode allows us to study the rare, bright objects such as quasars, bright star-forming galaxies in the early Universe as a way to understand the formation of the first objects in the Universe, and ultra-cool brown dwarfs. Observations in the warm mission will give us a unique chance to detect high-z supernovae, ices in young stellar objects (YSOs) even with low mass, the $3.3{\mu}$ feature of shocked circumstance in supernova remnants. Here, we report the current status of SPICA/FPC project and its extragalactic sciences.

  • PDF

A Study on the Effects Plastics have on the Product Designs through the Development of Plastic Materials - On & Around the Streamline favored by the Generation 1920-30'th - (플라스틱의 개발이 제품 디자인에 미친 영향에 관한 연구 - 1920-30년대 유선형을 중심으로 -)

  • Lee, Ok-Bun
    • Archives of design research
    • /
    • v.19 no.2 s.64
    • /
    • pp.283-292
    • /
    • 2006
  • The Plastic material had been developed in the middle of the 19th century as an alternative material. Along with the development of the electrical engineering industry, it cropped up into center stage as an effective material and has increasingly expanded its use. As such, the plastic material has bound deep-seated ties with the design activities of industrial products, coming into the main material for a variety of industrial designs. Despite its dose affinity to design function in terms of its materialistic property, we have rarely seen examples of intensive study on the realtionship between plastics and designs. This study aims to find the importance that the substance affects industrial products in designs along with the development of plastic materials. With the objective in mind, we made a review of the streamline stylishness that had flourished in the twenties and thirties of the 19th century. Through this study, we understand that the plastic material has a close realtionshop with design activities in three different aspects. First, its amorphous state of nature makes it possible to change into any shape one desires in plastic surgery, which feature in turn influences the moulding of any design forms. Second, the plastic material is best suited to mass-manufacture, which induces to reduce the cost of production. Hence, the expansion of design industry. Third, the plastic material allows the multiple variety of colors, sensitivity, gloss and patterns and infinitely large possibility ranging from natural senses to human senses with the result that numberless diversity of designs cdould come into being.

  • PDF

A Study on the Smart Home Safety Management System Based on NIALM (NIALM 기반의 스마트 홈 안전관리시스템에 관한 연구)

  • Jeong, Han-Sang;Sung, Kyung-Sang;Oh, Hae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.55-63
    • /
    • 2017
  • Due to spatial problems and system size,conventional measurement methods used to acquire the information needed for existing electrical energy and management have been limited to new buildings or areas where replacement is possible. This electric load management method is problematic when applying it to energy and safety management of vulnerable areas or existing homes or offices. The problem with installing a measurement module in every branch is that the system is too large. Even if the measurement module is installed, the type of load is not recognized, and efficient management is not performed. In particular, it is very difficult to apply it to traditional markets and backward facilities in Korea. In this paper, we apply NIALM technology and arc detection technology to solve these problems and verify the feasibility of NIALM for normal arc generation. Also, based on the verification results, we propose a new smart home safety management system that can effectively manage electrical safety and that can be applied to conventional market and existing home safety management systems. The proposed system conducts a comparative performance test with an existing safety management system. In addition, it achieves 95% or more load recognition for four loads, which is impossible in 40% of the existing systems, and the arc detection function was confirmed.

Part I Advantages re Applications of Slab type YAG Laser PartII R&D status of All Solid-State Laser in JAPAN

  • Iehisa, Nobuaki
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 1998.11a
    • /
    • pp.0-0
    • /
    • 1998
  • -Part I- As market needs become more various, the production of smaller quantities of a wider variety of products becomes increasingly important. In addition, in order to meet demands for more efficient production, long-term unmanned factory operation is prevailing at a remarkable pace. Within this context, laser machines are gaining increasing popularity for use in applications such as cutting and welding metallic and ceramic materials. FANUC supplies four models of $CO_2$ laser oscillators with laser power ranging from 1.5㎾ to 6㎾ on an OEM basis to machine tool builders. However, FANUC has been requested to produce laser oscillators that allow more compact and lower-cost laser machines to be built. To meet such demands, FANUC has developed six models of Slab type YAG laser oscillators with output power ranging from 150W to 2㎾. These oscillators are designed mainly fur cutting and welding sheet metals. The oscillator has an exceptionally superior laser beam quality compared to conventional YAG laser oscillators, thus providing significantly improved machining capability. In addition, the laser beam of the oscillator can be efficiently transmitted through quartz optical fibers, enabling laser machines to be simplified and made more compact. This paper introduces the features of FANUC’s developed Slab type YAG laser oscillators and their applications. - Part II - All-solid-state lasers employing laser diodes (LD) as a source of pumping solid-state laser feature high efficiency, compactness, and high reliability. Thus, they are expected to provide a new generation of processing tools in various fields, especially in automobile and aircraft industries where great hopes are being placed on laser welding technology for steel plates and aluminum materials for which a significant growth in demand is expected. Also, in power plants, it is hoped that reliability and safety will be improved by using the laser welding technology. As in the above, the advent of high-power all-solid-state lasers may not only bring a great technological innovation to existing industry, but also create new industry. This is the background for this project, which has set its sights on the development of high-power, all-solid-state lasers with an average output of over 10㎾, an oscillation efficiency of over 20%, and a laser head volume of below 0.05㎥. FANUC Ltd. is responsible for the research and development of slab type lasers, and TOSHIBA Corp. far rod type lasers. By pumping slab type Nd: YAG crystal and by using quasi-continuous wave (QCW) type LD stacks, FANUC has already obtained an average output power of 1.7㎾, an optical conversion efficiency of 42%, and an electro-optical conversion efficiency of 16%. These conversion efficiencies are the best results the world has ever seen in the field of high-power all-solid-state lasers. TOSHIBA Corp. has also obtained an output power of 1.2㎾, an optical conversion efficiency of 30%, and an electro-optical conversion efficiency of 12%, by pumping the rod type Nd: YAG crystal by continuous wave (CW) type LD stacks. The laser power achieved by TOSHIBA Corp. is also a new world record in the field of rod type all-solid-state lasers. This report provides details of the above results and some information on future development plans.

  • PDF

Energy Big Data Pre-processing System for Energy New Industries (에너지신산업을 위한 에너지 빅데이터 전처리 시스템)

  • Yang, Soo-Young;Kim, Yo-Han;Kim, Sang-Hyun;Kim, Won-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.851-858
    • /
    • 2021
  • Due to the increase in renewable energy and distributed resources, not only traditional data but also various energy-related data are being generated in the new energy industry. In other words, there are various renewable energy facilities and power generation data, system operation data, metering and rate-related data, as well as weather and energy efficiency data necessary for new services and analysis. Energy big data processing technology can systematically analyze and diagnose data generated in the first half of the power production and consumption infrastructure, including distributed resources, systems, and AMI. Through this, it will be a technology that supports the creation of new businesses in convergence between the ICT industry and the energy industry. To this end, research on the data analysis system, such as itemized characteristic analysis of the collected data, correlation sampling, categorization of each feature, and element definition, is needed. In addition, research on data purification technology for data loss and abnormal state processing should be conducted. In addition, it is necessary to develop and structure NIFI, Spark, and HDFS systems so that energy data can be stored and managed in real time. In this study, the overall energy data processing technology and system for various power transactions as described above were proposed.

Weaving the realities with video in multi-media theatre centering on Schaubuhne's Hamlet and Lenea de Sombra's Amarillo (멀티미디어 공연에서 비디오를 활용한 리얼리티 구축하기 - 샤우뷔네의 <햄릿>과 리니아 드 솜브라의 <아마릴로>를 중심으로 -)

  • Choi, Young-Joo
    • Journal of Korean Theatre Studies Association
    • /
    • no.53
    • /
    • pp.167-202
    • /
    • 2014
  • When video composes mise-en-scene during the performance, it reflects the aspect of contemporary image culture, where the individual as creator joins in the image culture through the device of cell phone and computer remediating the former video technology. It also closely related with the contemporary theatre culture in which 1960's and 1970's video art was weaved into the contemporary performance theatre. With these cultural background, theatre practitioners regarded media-friendly mise-en-scene as an alternative facing the cultural landscape the linear representational narrative did not correspond to the present culture. Nonetheless, it can not be ignored that video in the performance theatre is remediating its historical function: to criticize the social reality. to enrich the aesthetic or emotional reality. I focused video in the performance theatre could feature the object with the image by realizing the realtime relay, emphasizing the situation within the frame, and strengthening the reality by alluding the object as a gesutre. So I explored its two historical manuel. First, video recorded the spot, communicated the information, and arose the audience's recognition of the object to its critical function. Second, video in performance theatre could redistribute perceptual way according to the editing method like as close up, slow motion, multiple perspective, montage and collage, and transformation of the image to the aesthetic function. Reminding the historical function of video in contemporary performance theatre, I analyzed two shows, Schaubuhne's Hamlet and Lenea de Sombra's Amarillo which were introduced to Korean audiences during the 2010 Seoul Theatre Olympics. It is known to us that Ostermeir found real social reality as a text and made the play the context. In this, he used video as a vehicle to penetrate the social reality through the hero's perspective. It is also noteworthy that Ostermeir understood Hamlet's dilemma as these days' young generation's propensity. They delayed action while being involved in image culture. Besides his use of video in the piece revitalized the aesthetic function of video by hypermedial perceptual method. Amarillo combined documentary theatre method with installation, physical theatre, and video relay on the spot, and activated aesthetic function with the intermediality, its interacting co-relationship between the media. In this performance theatre, video has recorded and pursued the absent presence of the real people who died or lost in the desert. At the same time it fantasized the emotional aspect of the people at the moment of their death, which would be opaque or non prominent otherwise. As a conclusion, I found the video in contemporary performance theatre visualized the rupture between the media and perform their intermediality. It attempted to disturb the transparent immediacy to invoke the spectator's perception to the theatrical situation, to open its emotional and spiritual aspect, and to remind the realities as with Schaubuhne's Hamlet and Lenea de Sombra's Amarillo.

High Voltage β-Ga2O3 Power Metal-Oxide-Semiconductor Field-Effect Transistors (고전압 β-산화갈륨(β-Ga2O3) 전력 MOSFETs)

  • Mun, Jae-Kyoung;Cho, Kyujun;Chang, Woojin;Lee, Hyungseok;Bae, Sungbum;Kim, Jeongjin;Sung, Hokun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.201-206
    • /
    • 2019
  • This report constitutes the first demonstration in Korea of single-crystal lateral gallium oxide ($Ga_2O_3$) as a metal-oxide-semiconductor field-effect-transistor (MOSFET), with a breakdown voltage in excess of 480 V. A Si-doped channel layer was grown on a Fe-doped semi-insulating ${\beta}-Ga_2O_3$ (010) substrate by molecular beam epitaxy. The single-crystal substrate was grown by the edge-defined film-fed growth method and wafered to a size of $10{\times}15mm^2$. Although we fabricated several types of power devices using the same process, we only report the characterization of a finger-type MOSFET with a gate length ($L_g$) of $2{\mu}m$ and a gate-drain spacing ($L_{gd}$) of $5{\mu}m$. The MOSFET showed a favorable drain current modulation according to the gate voltage swing. A complete drain current pinch-off feature was also obtained for $V_{gs}<-6V$, and the three-terminal off-state breakdown voltage was over 482 V in a $L_{gd}=5{\mu}m$ device measured in Fluorinert ambient at $V_{gs}=-10V$. A low drain leakage current of 4.7 nA at the off-state led to a high on/off drain current ratio of approximately $5.3{\times}10^5$. These device characteristics indicate the promising potential of $Ga_2O_3$-based electrical devices for next-generation high-power device applications, such as electrical autonomous vehicles, railroads, photovoltaics, renewable energy, and industry.

Optimal Parameter Analysis and Evaluation of Change Detection for SLIC-based Superpixel Techniques Using KOMPSAT Data (KOMPSAT 영상을 활용한 SLIC 계열 Superpixel 기법의 최적 파라미터 분석 및 변화 탐지 성능 비교)

  • Chung, Minkyung;Han, Youkyung;Choi, Jaewan;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1427-1443
    • /
    • 2018
  • Object-based image analysis (OBIA) allows higher computation efficiency and usability of information inherent in the image, as it reduces the complexity of the image while maintaining the image properties. Superpixel methods oversegment the image with a smaller image unit than an ordinary object segment and well preserve the edges of the image. SLIC (Simple linear iterative clustering) is known for outperforming the previous superpixel methods with high image segmentation quality. Although the input parameter for SLIC, number of superpixels has considerable influence on image segmentation results, impact analysis for SLIC parameter has not been investigated enough. In this study, we performed optimal parameter analysis and evaluation of change detection for SLIC-based superpixel techniques using KOMPSAT data. Forsuperpixel generation, three superpixel methods (SLIC; SLIC0, zero parameter version of SLIC; SNIC, simple non-iterative clustering) were used with superpixel sizes in ranges of $5{\times}5$ (pixels) to $50{\times}50$ (pixels). Then, the image segmentation results were analyzed for how well they preserve the edges of the change detection reference data. Based on the optimal parameter analysis, image segmentation boundaries were obtained from difference image of the bi-temporal images. Then, DBSCAN (Density-based spatial clustering of applications with noise) was applied to cluster the superpixels to a certain size of objects for change detection. The changes of features were detected for each superpixel and compared with reference data for evaluation. From the change detection results, it proved that better change detection can be achieved even with bigger superpixel size if the superpixels were generated with high regularity of size and shape.