SURF is an algorithm which extracts feature points and generates their descriptors from input images, and it is being used for many applications such as object recognition, tracking, and constructing panorama pictures. Although SURF is known to be robust to changes of scale, rotation, and view points, it is hard to implement it in real time due to its complex and repetitive computations. Using 3.3 GHz Pentium, in our experiment, it takes 240ms to extract feature points and create descriptors in a VGA image containing about 1,000 feature points, which means that software implementation cannot meet the real time requirement, especially in embedded systems. In this paper, we present a hardware architecture that can compute the SURF algorithm very fast while consuming minimum hardware resources. Two key concepts of our architecture are parallelism (for repetitive computations) and efficient line memory usage (obtained by analyzing memory access patterns). As a result of FPGA synthesis using Xilinx Virtex5LX330, it occupies 101,348 LUTs and 1,367 KB on-chip memory, giving performance of 30 frames per second at 100 MHz clock.
Transactions of the Korean Society of Mechanical Engineers
/
v.17
no.6
/
pp.1412-1422
/
1993
As a part of development of process planning system for mold die manufaturing, a software system is developed, which recognizes features and extracts parameters of the shape from design data produced by solid modeller. The recognized feature date is fed to process planning and operation planning system. Low level geometry and topology data from commercial CAD system is transformed to high level machining feature data which used to be done by using a dedicated design system. The recognition algorithm is applied to the design data with boundary representation produced by a core modeller ACIS which has object oriented open architecture and is expected to become a common core modeller of next generation CAD system. The algoritm of recognition has been formulated for 21 features on prismatic components, but the feature set can be expanded by adding rules for the additional features.
For face detection techniques, the correctness of detection decreases with different lightings and backgrounds so such requires new methods and techniques. This study has aimed to obtain data for reasoning human emotional information by analyzing the components of the eyes and mouth that are critical in expressing emotions. To do this, existing problems in detecting face are addressed and a detection method that has a high detection rate and fast processing speed good at detecting environmental elements is proposed. This method must detect a specific part (eyes and a mouth) by using Haar-like Feature technique with the application of an integral image. After which, binaries detect elements based on color information, dividing the face zone and skin zone. To generate correct shape, the shape of detected elements is generated by using a bezier curve-a curve generation algorithm. To evaluate the performance of the proposed method, an experiment was conducted by using data in the Face Recognition Homepage. The result showed that Haar-like technique and bezier curve method were able to detect face elements more elaborately.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.27
no.2
/
pp.195-202
/
2009
As the generation and application of spatial information is gradually expanded not only in traditional surveying fields but also a CNS and an ITS recently. The Accuracy and the newest of data grow to be an important element. But digital map is updated with system based tile. So, it is hard to get the newest of data and to be satisfied with user requirements. In this study, management system is developed to manage feature change efficiently using bid informations from NaraJangter which service the bid informations. A construction works with change possibility of feature from bid informations are classified and are made DB. And the DB is used as the feature change forecast informations. Also, It is converted from bid information of text form to positioning informations connected to spatial information data. If this system is made successfully, this system contributes to reduce the cost for the update of digital map and to take the newest date of spatial informations.
This paper proposes a depth image generation algorithm of stereo images using a deep learning model composed of a CNN (convolutional neural network). The proposed algorithm consists of a feature extraction unit which extracts the main features of each parallax image and a depth learning unit which learns the parallax information using extracted features. First, the feature extraction unit extracts a feature map for each parallax image through the Xception module and the ASPP(Atrous spatial pyramid pooling) module, which are composed of 2D CNN layers. Then, the feature map for each parallax is accumulated in 3D form according to the time difference and the depth image is estimated after passing through the depth learning unit for learning the depth estimation weight through 3D CNN. The proposed algorithm estimates the depth of object region more accurately than other algorithms.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.6
/
pp.2806-2825
/
2018
Unsupervised learning has shown good performance on image, video and audio classification tasks, and much progress has been made so far. It studies how systems can learn to represent particular input patterns in a way that reflects the statistical structure of the overall collection of input patterns. Many promising deep learning systems are commonly trained by the greedy layerwise unsupervised learning manner. The performance of these deep learning architectures benefits from the unsupervised learning ability to disentangling the abstractions and picking out the useful features. However, the existing unsupervised learning algorithms are often difficult to train partly because of the requirement of extensive hyperparameters. The tuning of these hyperparameters is a laborious task that requires expert knowledge, rules of thumb or extensive search. In this paper, we propose a simple and effective unsupervised feature learning algorithm for image classification, which exploits an explicit optimizing way for population and lifetime sparsity. Firstly, a sparse target matrix is built by the competitive rules. Then, the sparse features are optimized by means of minimizing the Euclidean norm ($L_2$) error between the sparse target and the competitive layer outputs. Finally, a classifier is trained using the obtained sparse features. Experimental results show that the proposed method achieves good performance for image classification, and provides discriminative features that generalize well.
RFID could be applied in the various fields such as distribution beside, circulation, traffic and environment on information communication outside. So this can speak as point of ubiquitous computing's next generation technology. However, it is discussed problem of RFID security recently, so we must prepare thoroughly about RFID security for secure information. In this paper, we proposed a method which could protect private information and ensure RFID's identification effectively storing face feature information on RFID tag. Our method which is improved linear discriminant analysis has reduced dimension of feature information which has large size of data. Therefore, we can sore face feature information in small memory field of RFID tag. Our propose d algorithm has shown 92% recognition rate in experimental results and can be applied to entrance control management system, digital identification card and others.
Lee Dae-Young;Yu Jae-Hun;Yu Tae-U;Hwang Jungho;Kim Yong-Jun
Transactions of the Society of Information Storage Systems
/
v.1
no.1
/
pp.108-114
/
2005
The generation of fine relics of suspensions is a significant interest as it holds the key to the fabrication of electronic devices. These processes offer opportunities for miniaturization of multilayer circuits, for production of functionally graded materials, ordered composites and far small complex-shaped components. Some novel printing methods of depositing ceramic and metal droplets were suggested in recent years. In an electro-hydrodynamic printing, the metallic capillary nozzle can be raised to several kilovolts with respect to the infinite ground plate or pin-type electrode positioned a few millimeters from the nozzle tip. Depending on the electrical and physical properties of the liquid, for a given geometry, it Is possible to generate droplets in any one of three modes, dripping, cone-jet and multi-jet. In this experiment, an alumina suspension flowing through a nozzle was subjected to electro-hydrodynamic printing using pin-type electrodes in the cone-jet mode at different applied voltages. The pin-type electrodes of 1, 100, 1000${\mu}m$ in diameter were used to form fine ceramic patterns onto the substrates. Various feature sizes with applied voltages and electrode diameters were measured. The feature sizes increased with the electrode diameter and applied voltages. The feature size was as fine as $30 {\mu}m$.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.10
/
pp.3230-3255
/
2022
Causality mining in NLP is a significant area of interest, which benefits in many daily life applications, including decision making, business risk management, question answering, future event prediction, scenario generation, and information retrieval. Mining those causalities was a challenging and open problem for the prior non-statistical and statistical techniques using web sources that required hand-crafted linguistics patterns for feature engineering, which were subject to domain knowledge and required much human effort. Those studies overlooked implicit, ambiguous, and heterogeneous causality and focused on explicit causality mining. In contrast to statistical and non-statistical approaches, we present Bidirectional Encoder Representations from Transformers (BERT) integrated with Multi-level Feature Networks (MFN) for causality recognition, called BERT+MFN for causality recognition in noisy and informal web datasets without human-designed features. In our model, MFN consists of a three-column knowledge-oriented network (TC-KN), bi-LSTM, and Relation Network (RN) that mine causality information at the segment level. BERT captures semantic features at the word level. We perform experiments on Alternative Lexicalization (AltLexes) datasets. The experimental outcomes show that our model outperforms baseline causality and text mining techniques.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.11a
/
pp.79-81
/
2022
MPEG-VCM(Video Coding for Machines)에서는 머신비전(machine vision) 네트워크의 백본(backbone)에서 추출된 이미지/비디오 특징 압축을 위한 표준화를 진행하고 있다. 현재 VCM 표준기술 탐색 과정에서 가장 좋은 압축 성능을 보이는 MSFC(Multi-Scale Feature compression) 기반 압축 네트워크 모델은 추출된 멀티-스케일 특징을 단일-스케일 특징으로 변환하여 특징맵으로 구성하고 이를 VVC 로 압축한다. 본 논문에서는 MSFC 기반 압축 모델에서 Min-Max 값 시그널링을 제외한 최소-최대(Min-Max) 정규화를 포함한 개선된 특징맵 생성 기법을 제시한다. 즉, 제안기법은 VCM 디코더에서의 특징맵 복원을 위한 Min-Max 값을 학습 기반으로 생성함으로써 Min-Max 시그널링의 비트 오버헤드 절감뿐만 아니라 별도의 시그널링 기제를 생략한 보다 단순한 전송 비트스트림 구성을 가능하게 한다. 실험결과 제안기법은 이미지 앵커(Anchor) 대비 BPP-mAP 성능에서 83.24% BD-rate 이득을 보이며, 이는 기존 MSFC 보다 1.74%정도 다소 떨어지지만 별도의 Min-Max 시그널링 없이도 기존의 성능을 유지할 수 있음을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.