• 제목/요약/키워드: feature extraction, and classification

검색결과 662건 처리시간 0.026초

웨이블릿 신경망을 이용한 패턴 분류 시스템 설계 및 EEG 신호 분류에 대한 연구 (A Study of Pattern Classification System Design Using Wavelet Neural Network and EEG Signal Classification)

  • 임성길;박찬호;이현수
    • 전자공학회논문지CI
    • /
    • 제39권3호
    • /
    • pp.32-43
    • /
    • 2002
  • 본 논문에서는 신경망에 기반한 디지털 신호를 위한 패턴분류 시스템을 제안한다. 제안하는 시스템은 두 가지 신경망 모델로 구성된다. 첫 번째 부분은 특징 추출의 역할을 하는 웨이블릿 신경망이다. 이 부분을 위해 기존의 웨이블릿 신경망 모델들을 비교한 후, 특징 추출을 위한 새로운 웨이블릿 신경망 모델을 제안한다. 다른 부분은 패턴 분류를 위한 웨이블릿 신경망이다. 패턴 분류에 적용하기 위해 기존의 웨이블릿 신경망 구조를 수정하고 학습 방법을 제안한다. 패턴 분류 웨이블릿 신경망의 입력은 특징 추출 신경망의 은닉노드의 연결강도, 확장 및 이동 파라미터로 구성되었다. 또 출력은 특징 추출 신경망의 입력 신호가 속한 부류를 나타낸다. 제안한 시스템을 EEG 신호를 주파수에 따라서 분류하는 문제에 적용하였다.

SVM-based Drone Sound Recognition using the Combination of HLA and WPT Techniques in Practical Noisy Environment

  • He, Yujing;Ahmad, Ishtiaq;Shi, Lin;Chang, KyungHi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권10호
    • /
    • pp.5078-5094
    • /
    • 2019
  • In recent years, the development of drone technologies has promoted the widespread commercial application of drones. However, the ability of drone to carry explosives and other destructive materials may bring serious threats to public safety. In order to reduce these threats from illegal drones, acoustic feature extraction and classification technologies are introduced for drone sound identification. In this paper, we introduce the acoustic feature vector extraction method of harmonic line association (HLA), and subband power feature extraction based on wavelet packet transform (WPT). We propose a feature vector extraction method based on combined HLA and WPT to extract more sophisticated characteristics of sound. Moreover, to identify drone sounds, support vector machine (SVM) classification with the optimized parameter by genetic algorithm (GA) is employed based on the extracted feature vector. Four drones' sounds and other kinds of sounds existing in outdoor environment are used to evaluate the performance of the proposed method. The experimental results show that with the proposed method, identification probability can achieve up to 100 % in trials, and robustness against noise is also significantly improved.

효율적 특징벡터 추출기법와 신경회로망을 이용한 전력외란 자동 식별 (Automatic Classification of Power Quality Disturbances Using Efficient Feature Vector Extraction and Neural Networks)

  • 반지훈;김현수;남상원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.1030-1032
    • /
    • 1998
  • In this paper, an efficient feature vector extraction method and MLP neural network are utilized to automatically detect and classify power quality disturbances, where the proposed classification procedure consists of the following three parts: i.e., (i) PQ disturbance detection using discrete wavelet transform. (ii) feature vector extraction from the detected disturbance. using several methods, such as FFT, DWT, Fisher's criterion. etc.. and (iii) classification of the corresponding type of each PQ disturbance by recognizing the pattern of the extracted feature vector. To demonstrate the performance and, applicability of the proposed classification algorithm. some test results obtained by analyzing 10-class PQ disturbances are also provided.

  • PDF

Hybrid-Feature Extraction for the Facial Emotion Recognition

  • Byun, Kwang-Sub;Park, Chang-Hyun;Sim, Kwee-Bo;Jeong, In-Cheol;Ham, Ho-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1281-1285
    • /
    • 2004
  • There are numerous emotions in the human world. Human expresses and recognizes their emotion using various channels. The example is an eye, nose and mouse. Particularly, in the emotion recognition from facial expression they can perform the very flexible and robust emotion recognition because of utilization of various channels. Hybrid-feature extraction algorithm is based on this human process. It uses the geometrical feature extraction and the color distributed histogram. And then, through the independently parallel learning of the neural-network, input emotion is classified. Also, for the natural classification of the emotion, advancing two-dimensional emotion space is introduced and used in this paper. Advancing twodimensional emotion space performs a flexible and smooth classification of emotion.

  • PDF

CLASSIFIED ELGEN BLOCK: LOCAL FEATURE EXTRACTION AND IMAGE MATCHING ALGORITHM

  • Hochul Shin;Kim, Seong-Dae
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2108-2111
    • /
    • 2003
  • This paper introduces a new local feature extraction method and image matching method for the localization and classification of targets. Proposed method is based on the block-by-block projection associated with directional pattern of blocks. Each pattern has its own eigen-vertors called as CEBs(Classified Eigen-Blocks). Also proposed block-based image matching method is robust to translation and occlusion. Performance of proposed feature extraction and matching method is verified by the face localization and FLIR-vehicle-image classification test.

  • PDF

Sparse Feature Convolutional Neural Network with Cluster Max Extraction for Fast Object Classification

  • Kim, Sung Hee;Pae, Dong Sung;Kang, Tae-Koo;Kim, Dong W.;Lim, Myo Taeg
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2468-2478
    • /
    • 2018
  • We propose the Sparse Feature Convolutional Neural Network (SFCNN) to reduce the volume of convolutional neural networks (CNNs). Despite the superior classification performance of CNNs, their enormous network volume requires high computational cost and long processing time, making real-time applications such as online-training difficult. We propose an advanced network that reduces the volume of conventional CNNs by producing a region-based sparse feature map. To produce the sparse feature map, two complementary region-based value extraction methods, cluster max extraction and local value extraction, are proposed. Cluster max is selected as the main function based on experimental results. To evaluate SFCNN, we conduct an experiment with two conventional CNNs. The network trains 59 times faster and tests 81 times faster than the VGG network, with a 1.2% loss of accuracy in multi-class classification using the Caltech101 dataset. In vehicle classification using the GTI Vehicle Image Database, the network trains 88 times faster and tests 94 times faster than the conventional CNNs, with a 0.1% loss of accuracy.

접촉식 센서 데이터를 이용한 지질 특성 추출 및 지질 분류 (Terrain Feature Extraction and Classification using Contact Sensor Data)

  • 박병곤;김자영;이지홍
    • 로봇학회논문지
    • /
    • 제7권3호
    • /
    • pp.171-181
    • /
    • 2012
  • Outdoor mobile robots are faced with various terrain types having different characteristics. To run safely and carry out the mission, mobile robot should recognize terrain types, physical and geometric characteristics and so on. It is essential to control appropriate motion for each terrain characteristics. One way to determine the terrain types is to use non-contact sensor data such as vision and laser sensor. Another way is to use contact sensor data such as slope of body, vibration and current of motor that are reaction data from the ground to the tire. In this paper, we presented experimental results on terrain classification using contact sensor data. We made a mobile robot for collecting contact sensor data and collected data from four terrains we chose for experimental terrains. Through analysis of the collecting data, we suggested a new method of terrain feature extraction considering physical characteristics and confirmed that the proposed method can classify the four terrains that we chose for experimental terrains. We can also be confirmed that terrain feature extraction method using Fast Fourier Transform (FFT) typically used in previous studies and the proposed method have similar classification performance through back propagation learning algorithm. However, both methods differ in the amount of data including terrain feature information. So we defined an index determined by the amount of terrain feature information and classification error rate. And the index can evaluate classification efficiency. We compared the results of each method through the index. The comparison showed that our method is more efficient than the existing method.

용접결함의 형상인식을 위한 특징변수 추출에 관한 연구 (A Study on the Extraction of Feature Variables for the Pattern Recognition of Welding Flaws)

  • 김재열;노병옥;유신;김창현;고명수
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.103-111
    • /
    • 2002
  • In this study, the natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

AUTOMATIC SELECTION AND ADJUSTMENT OF FEATURES FOR IMAGE CLASSIFICATION

  • Saiki, Kenji;Nagao, Tomoharu
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.525-528
    • /
    • 2009
  • Recently, image classification has been an important task in various fields. Generally, the performance of image classification is not good without the adjustment of image features. Therefore, it is desired that the way of automatic feature extraction. In this paper, we propose an image classification method which adjusts image features automatically. We assume that texture features are useful in image classification tasks because natural images are composed of several types of texture. Thus, the classification accuracy rate is improved by using distribution of texture features. We obtain texture features by calculating image features from a current considering pixel and its neighborhood pixels. And we calculate image features from distribution of textures feature. Those image features are adjusted to image classification tasks using Genetic Algorithm. We apply proposed method to classifying images into "head" or "non-head" and "male" or "female".

  • PDF