• 제목/요약/키워드: feature extract

검색결과 1,160건 처리시간 0.028초

잔차 신경망과 팽창 합성곱 신경망을 이용한 라이트 필드 각 초해상도 기법 (Light Field Angular Super-Resolution Algorithm Using Dilated Convolutional Neural Network with Residual Network)

  • 김동명;서재원
    • 한국정보통신학회논문지
    • /
    • 제24권12호
    • /
    • pp.1604-1611
    • /
    • 2020
  • 마이크로렌즈 어레이 기반의 카메라로 촬영된 라이트필드 영상은 낮은 공간해상도 및 각해상도로 인하여 실제 사용하기에는 많은 제약이 따른다. 고해상도의 공간해상도 영상은 최근 많이 연구되고 있는 단일 영상 초해상도 기법으로 쉽게 얻을 수 있으나 고해상도의 각해상도 영상은 영상사이에 내재된 시점차 정보를 이용하는 과정에서 왜곡이 발생하여 좋은 품질의 각해상도 영상을 얻기 힘든 문제가 있다. 본 논문에서는 영상 사이에 내재된 시점차 정보를 효과적으로 추출하기 위해서 팽창 합성곱 신경망을 이용하여 초기 특징맵을 추출하고 잔차 신경망으로 새로운 시점 영상을 생성하는 라이트 필드 각 초해상도 영상 기법을 제안한다. 제안하는 네트워크는 기존의 각 초해상도 네트워크와 비교하여 PSNR 및 주관적 화질 비교에서 우수한 성능을 보였다.

Optimization of 1D CNN Model Factors for ECG Signal Classification

  • Lee, Hyun-Ji;Kang, Hyeon-Ah;Lee, Seung-Hyun;Lee, Chang-Hyun;Park, Seung-Bo
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권7호
    • /
    • pp.29-36
    • /
    • 2021
  • 본 논문에서는 딥러닝 모델을 이용하여 모바일 기기의 심전도 신호 측정 데이터를 분류한다. 비정상 심장박동을 높은 정확도로 분류하기 위해 딥러닝 모델의 구성 요소 세 가지를 선정하고 요소의 조건 변화에 따른 분류 정확도를 비교한다. 심전도 신호 데이터의 특징을 스스로 추출할 수 있는 CNN 모델을 적용하고 모델을 구성하는 모델의 깊이, 최적화 방법, 활성화 함수의 조건을 변경하여 총 48개의 조합의 성능을 비교한다. 가장 높은 정확도를 보이는 조건의 조합을 도출한 결과 컨볼루션 레이어 19개, 최적화 방법 SGD, 활성화 함수 Mish를 적용하였을 때 정확도 97.88%로 모든 조합 중 가장 높은 분류 정확도를 얻었다. 이 실험에서 CNN을 활용한 1-채널 심전도 신호의 특징 추출과 비정상 박동 검출의 적합성을 확인하였다.

A technique for predicting the cutting points of fish for the target weight using AI machine vision

  • Jang, Yong-hun;Lee, Myung-sub
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권4호
    • /
    • pp.27-36
    • /
    • 2022
  • 본 논문에서는 이러한 어류 가공 현장의 문제점을 개선하기 위해서 AI 머신 비전을 이용한 어류의 목표 중량 절단 예측기법을 제안한다. 제안하는 방법은 먼저 입력된 물고기의 평면도와 정면도를 촬영하여 이미지기반의 전처리를 수행한다. 그런 다음 RANSAC(RANdom SAMmple Consensus)를 사용하여 어류의 윤곽선을 추출한 다음 3D 모델링을 사용하여 물고기의 3D 외부 정보를 추출한다. 이어서 추출된 3차원 특징 정보와 측정된 중량 정보를 머신러닝하여 목표 중량에 대한 절단 지점을 예측하기 위한 신경망 모델을 생성한다. 마지막으로 제안기법을 통해 예측된 절단 지점으로 직접 절단한 뒤 그 중량을 측정하였다. 그리고 측정된 무게를 목표 무게와 비교하여 MAE(Mean Absolute Error) 와 MRE(Mean Relative Error)와 같은 평가 방법을 사용해 성능을 평가하였다. 그 결과, 목표 중량과 비교해 3% 이내의 평균 오차율을 달성하였다. 제안된 기법은 향후 자동화 시스템과 연계되어 수산업 발전에 크게 기여할 것으로 전망한다.

Boundary-Aware Dual Attention Guided Liver Segment Segmentation Model

  • Jia, Xibin;Qian, Chen;Yang, Zhenghan;Xu, Hui;Han, Xianjun;Ren, Hao;Wu, Xinru;Ma, Boyang;Yang, Dawei;Min, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권1호
    • /
    • pp.16-37
    • /
    • 2022
  • Accurate liver segment segmentation based on radiological images is indispensable for the preoperative analysis of liver tumor resection surgery. However, most of the existing segmentation methods are not feasible to be used directly for this task due to the challenge of exact edge prediction with some tiny and slender vessels as its clinical segmentation criterion. To address this problem, we propose a novel deep learning based segmentation model, called Boundary-Aware Dual Attention Liver Segment Segmentation Model (BADA). This model can improve the segmentation accuracy of liver segments with enhancing the edges including the vessels serving as segment boundaries. In our model, the dual gated attention is proposed, which composes of a spatial attention module and a semantic attention module. The spatial attention module enhances the weights of key edge regions by concerning about the salient intensity changes, while the semantic attention amplifies the contribution of filters that can extract more discriminative feature information by weighting the significant convolution channels. Simultaneously, we build a dataset of liver segments including 59 clinic cases with dynamically contrast enhanced MRI(Magnetic Resonance Imaging) of portal vein stage, which annotated by several professional radiologists. Comparing with several state-of-the-art methods and baseline segmentation methods, we achieve the best results on this clinic liver segment segmentation dataset, where Mean Dice, Mean Sensitivity and Mean Positive Predicted Value reach 89.01%, 87.71% and 90.67%, respectively.

Feature Extraction and Evaluation for Classification Models of Injurious Falls Based on Surface Electromyography

  • Lim, Kitaek;Choi, Woochol Joseph
    • 한국전문물리치료학회지
    • /
    • 제28권2호
    • /
    • pp.123-131
    • /
    • 2021
  • Background: Only 2% of falls in older adults result in serious injuries (i.e., hip fracture). Therefore, it is important to differentiate injurious versus non-injurious falls, which is critical to develop effective interventions for injury prevention. Objects: The purpose of this study was to a. extract the best features of surface electromyography (sEMG) for classification of injurious falls, and b. find a best model provided by data mining techniques using the extracted features. Methods: Twenty young adults self-initiated falls and landed sideways. Falling trials were consisted of three initial fall directions (forward, sideways, or backward) and three knee positions at the time of hip impact (the impacting-side knee contacted the other knee ("knee together") or the mat ("knee on mat"), or neither the other knee nor the mat was contacted by the impacting-side knee ("free knee"). Falls involved "backward initial fall direction" or "free knee" were defined as "injurious falls" as suggested from previous studies. Nine features were extracted from sEMG signals of four hip muscles during a fall, including integral of absolute value (IAV), Wilson amplitude (WAMP), zero crossing (ZC), number of turns (NT), mean of amplitude (MA), root mean square (RMS), average amplitude change (AAC), difference absolute standard deviation value (DASDV). The decision tree and support vector machine (SVM) were used to classify the injurious falls. Results: For the initial fall direction, accuracy of the best model (SVM with a DASDV) was 48%. For the knee position, accuracy of the best model (SVM with an AAC) was 49%. Furthermore, there was no model that has sensitivity and specificity of 80% or greater. Conclusion: Our results suggest that the classification model built upon the sEMG features of the four hip muscles are not effective to classify injurious falls. Future studies should consider other data mining techniques with different muscles.

Noise Elimination Using Improved MFCC and Gaussian Noise Deviation Estimation

  • Sang-Yeob, Oh
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권1호
    • /
    • pp.87-92
    • /
    • 2023
  • 음성 인식 시스템의 지속적인 발전으로 음성에 대한 인식율은 급속도로 발전되었지만 사용 환경에서의 잡음과 여러 음성이 혼합되어 발생하는 잡음으로 정확한 음성을 인식할 수 없는 단점을 가진다. 환경 잡음이 있는 음성을 처리할 때 음성 인식률을 높이기 위해서는 잡음을 제거해야 하며, 기존의 HMM, CHMM, GMM, 그리고 AI 모델이 적용된 DNN에서도 예상치 못한 잡음이 발생하거나 기본적으로 디지털 신호에 양자화 잡음이 추가되면 소스 신호가 변경되거나 손상되어 인식률이 저하된다. 이를 해결하기 위해 각 음성 프레임에 대한 음성 신호의 특징을 효율적으로 추출하기 위해 MFCC를 개선하여 처리하였으며, 음성 신호에 대한 잡음을 제거하기 위해 가우시안 모델을 적용한 잡음 편차 추정을 이용한 잡음 제거 방법을 개선하여 적용하였다. 제안된 모델에 대한 성능 평가는 음성에 대한 정확성 평가를 위해 교차 상관 계수를 사용하여 처리하였으며, 제안하는 방법의 인식률을 평가한 결과 이들에 대한 상관 계수에 대한 평균값 차이는 0.53 dB 개선된 것을 확인하였다.

라디오믹스 기반 직장암 수술 위험도 예측을 위한 MRI 반자동 선택 바이오마커 검증 연구 (A Study on MRI Semi-Automatically Selected Biomarkers for Predicting Risk of Rectal Cancer Surgery Based on Radiomics)

  • 백영서;김영재;전영배;황태식;백정흠;김광기
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권1호
    • /
    • pp.11-18
    • /
    • 2023
  • Currently, studies to predict the risk of rectal cancer surgery select MRI image slices based on the clinical experience of surgeons. The purpose of this study is to semi-automatically select and classify 2D MRI image slides to predict the risk of rectal cancer surgery using biomarkers. The data used were retrospectively collected MRI imaging data of 50 patients who underwent laparoscopic surgery for rectal cancer at Gachon University Gil Medical Center. Expert-selected MRI image slices and non-selected slices were screened and radiomics was used to extract a total of 102 features. A total of 16 approaches were used, combining 4 classifiers and 4 feature selection methods. The combination of Random Forest and Ridge performed with a sensitivity of 0.83, a specificity of 0.88, an accuracy of 0.85, and an AUC of 0.89±0.09. Differences between expert-selected MRI image slices and non-selected slices were analyzed by extracting the top five significant features. Selected quantitative features help expedite decision making and improve efficiency in studies to predict risk of rectal cancer surgery.

네트워크 침입 탐지를 위해 CICIDS2017 데이터셋으로 학습한 Stacked Sparse Autoencoder-DeepCNN 모델 (Stacked Sparse Autoencoder-DeepCNN Model Trained on CICIDS2017 Dataset for Network Intrusion Detection)

  • 이종화;김종욱;최미정
    • KNOM Review
    • /
    • 제24권2호
    • /
    • pp.24-34
    • /
    • 2021
  • 엣지 컴퓨팅을 사용하는 서비스 공급업체는 높은 수준의 서비스를 제공한다. 이에 따라 다양하고 중요한 정보들이 단말 장치에 저장되면서 탐지하기 더욱 어려운 최신 사이버 공격의 핵심 목표가 됐다. 보안을 위해 침입 탐지시스템과 같은 보안 시스템이 자주 활용되지만, 기존의 침입 탐지 시스템은 탐지 정확도가 낮은 문제점이 존재한다. 따라서 본 논문에서는 엣지 컴퓨팅에서 단말 장치의 더욱 정확한 침입 탐지를 위한 기계 학습 모델을 제안한다. 제안하는 모델은 희소성 제약을 사용하여 입력 데이터의 중요한 특징 벡터들을 추출하는 stacked sparse autoencoder (SSAE)와 convolutional neural network (CNN)를 결합한 하이브리드 모델이다. 최적의 모델을 찾기 위해 SSAE의 희소성 계수를 조절하면서 모델의 성능을 비교 및 분석했다. 그 결과 희소성 계수가 일 때 96.9%로 가장 높은 정확도를 보여주었다. 따라서 모델이 중요한 특징들만 학습할 경우 더 높은 성능을 얻을 수 있었다.

자궁경부 영상에서의 라디오믹스 기반 판독 불가 영상 분류 알고리즘 연구 (A Radiomics-based Unread Cervical Imaging Classification Algorithm)

  • 김고은;김영재;주웅;남계현;김수녕;김광기
    • 대한의용생체공학회:의공학회지
    • /
    • 제42권5호
    • /
    • pp.241-249
    • /
    • 2021
  • Recently, artificial intelligence for diagnosis system of obstetric diseases have been actively studied. Artificial intelligence diagnostic assist systems, which support medical diagnosis benefits of efficiency and accuracy, may experience problems of poor learning accuracy and reliability when inappropriate images are the model's input data. For this reason, before learning, We proposed an algorithm to exclude unread cervical imaging. 2,000 images of read cervical imaging and 257 images of unread cervical imaging were used for this study. Experiments were conducted based on the statistical method Radiomics to extract feature values of the entire images for classification of unread images from the entire images and to obtain a range of read threshold values. The degree to which brightness, blur, and cervical regions were photographed adequately in the image was determined as classification indicators. We compared the classification performance by learning read cervical imaging classified by the algorithm proposed in this paper and unread cervical imaging for deep learning classification model. We evaluate the classification accuracy for unread Cervical imaging of the algorithm by comparing the performance. Images for the algorithm showed higher accuracy of 91.6% on average. It is expected that the algorithm proposed in this paper will improve reliability by effectively excluding unread cervical imaging and ultimately reducing errors in artificial intelligence diagnosis.

사회재난 및 안전사고 데이터 분석을 위한 표준 구조 연구 (A Study of the Standard Structure for the Social Disaster and Safety Incidents Data)

  • 이창열;김태환
    • 한국재난정보학회 논문집
    • /
    • 제17권4호
    • /
    • pp.817-828
    • /
    • 2021
  • 연구목적: 본 논문은 사회재난 및 안전사고 발생에 따른 재난 유형별 조사 분석 정보에 대한 공통 데이터 도출과 머신 러닝 기반 사고 예측을 지원하는 특성화 데이터를 통합한 사회재난 및 안전사고 데이터 셋 구조를 도출하는 연구에 초점을 맞추었다. 연구방법: 기존 조사 분석 보고서의 사고 분류, 원인, 피해 등을 표시할 수 있는 데이터를 중심으로 머신 러닝에 활용할 수 있는 특성화 데이터 도출과 이에 대한 XML 기반의 표준 체계를 도출한다. 연구결과: XML 기반의 표준 스키마 도출과 사례 제시를 하였다. 결론: 본 논문에서 도출된 표준안을 사회재난 및 안전사고 데이터셋 구축에 활용하고, 이를 기반으로 여러 분야에서 재난 사고 및 안전의 위험을 예측할 수 있는 응용 기술을 개발할 수 있게 지원한다.