Journal of the Korean Society for Precision Engineering
/
v.10
no.4
/
pp.30-41
/
1993
Developed in this paper is a feature based modeling system for the design of welded plat construction(WPC) which is composed of flat or bended plates represented as reference plane with a constant thickness. First, the necessity and the characteristics of the modeing system for WPC as compared with the assembly of mechanical parts are investigated. Secondly, feature library for the assembly of WPC is shown which contains several types of features like joint feature, groove feature, material feature, and precision feature. Thirdly, the assembly procedures are presented which mainly consist of both the assembly transformation and the correct assembly checking. Fourthly, weld lines of the assembled WPC are defined so that those can be used in the process planning or the manufacturing stage. Finally, a prototype by a geometric modeling software Pro/Engineer, a graphic software GL(Graphic Library), and C language on a CAD workstation IRIS.
Korean Journal of English Language and Linguistics
/
v.2
no.2
/
pp.207-226
/
2002
In this paper we provide an alternative explanation for there construction, by assuming that the expletive there (EXPL) has independently uninterpretable Case feature as well as u[person], not as being pied-pipied with $\varphi$-feature. If EXPL has only u[person], we could analyse incorrectly some there constructions, including an embedded infinitive clause: by Chomsky (1998, 1999) in the construction, EXPL is ‘frozen’ and cannot participate in the computation of higher. As a result, we could predict incorrectly that the derivation is crashed. But if EXPL has two uninterpretable features, u[person] and u[Case], we could predict correctly that the derivation is converged: the u[person] of EXPL is deleted under Matching/Agree with $T_{def}$; still, the undeleted u[Case] of EXPL is activating; so EXPL can be raised to [SPEC, T] to satisfy the EPP-feature of matrix T.
Korean Journal of Construction Engineering and Management
/
v.22
no.2
/
pp.63-71
/
2021
This paper looks into how to enhance construction project management, focusing on the change order, which is often considered one of the major causes for construction delays, disputes, and claims in the middle east construction. First, this paper categorizes the major causes of change orders. It suggests a detailed classification standard for affecting factors resulting from change orders based on a case study result of an on-going construction project in the Middle East. In particular, this paper presents a method to apply a machine learning-based feature selection to quantify the importance of change order triggers and affecting factors. As a result, the case study identifies six major change order triggers and eight affecting factors. Also, a meaningful relationship between change order triggers and affecting factors by each category is presented. This paper will contribute to setting a clear guideline for change order management for the international plant construction field while helping prevent construction delays and cost run-ups by reducing the time required for change order resolution between project owners and contractors.
In this paper, we propose a rank-weighted reconstruction feature to improve the robustness of a feed-forward deep neural network (FFDNN)-based acoustic model. In the FFDNN-based acoustic model, an input feature is constructed by vectorizing a submatrix that is created by slicing the feature vectors of frames within a context window. In this type of feature construction, the appropriate context window size is important because it determines the amount of trivial or discriminative information, such as redundancy, or temporal context of the input features. However, we ascertained whether a single parameter is sufficiently able to control the quantity of information. Therefore, we investigated the input feature construction from the perspectives of rank and nullity, and proposed a rank-weighted reconstruction feature herein, that allows for the retention of speech information components and the reduction in trivial components. The proposed method was evaluated in the TIMIT phone recognition and Wall Street Journal (WSJ) domains. The proposed method reduced the phone error rate of the TIMIT domain from 18.4% to 18.0%, and the word error rate of the WSJ domain from 4.70% to 4.43%.
Journal of the Korea Institute of Building Construction
/
v.22
no.3
/
pp.317-326
/
2022
With the development of various technologies in the area of artificial intelligence, a number of studies to application of artificial intelligence technology in the construction field are underway. Diverse technologies have been applied to the task of predicting construction costs, and construction cost prediction technologies applying artificial intelligence technologies have recently been developed. However, it is difficult to secure the vast amount of construction cost data required for machine learning, which has not yet been practically used. In this study, to predict the construction cost, the latest artificial neural network(ANN) method is used to propose a method to improve the construction cost prediction performance. In particular, to improve predictive performance, a log conversion method of target variables and a feature scaling method to eliminate the difference in the relative influence of each column data are applied, and their performance in predicting construction cost is compared and analyzed.
IDS 에서 가장 중요한 것은 침입을 논리적으로 모델링하고, 이것을 센싱 할 수 있는 Filter 의 개발이며 Filter 에서 발생한 이벤트들에서 특정 공격 행위를 인식할 수 있는 신호인 Signature 의 정의를 통해 이벤트 스트림에서 Signature 를 자동으로 인식할 수 있는 방법에 대한 연구가 가장 핵심적이라고 할 수 있다. 본 논문은 이러한 filter 와 Signature 에서 사용할 수 있도록 특징들이 정의 되어있는 양식으로 원시 데이터로부터 profile 을 생성 filter 와 signature 에서 탐지할 수 있는 모듈을 적용할 수 있도록 네트웍과 host input stream 등의 raw audit data 에서 특징을 추출 Feature Construction 작성에 대한 연구이다.
Korean displays an interesting construction (so-called possessor agreement construction), where a possessor nominal and its possessum nominal are marked with the same case as shown in the example Mary-ka John-ul tali-lul cha-ss-ta ‘Mary kicked John's leg’ More interestingly, not all possessors in possessive construction are marked the same case with its possessum as shorn in the ungrammatical sentence *Mary-ka John-ul cha-lul cha-ss-ta ‘Mary kicked John's car’. Hence, a simple but non-trivial question arises: In what situation are both possessors and possessums marked with the same case\ulcorner In this paper, we advance three claims: (i) Possessor agreement appears in the situation where entailment is satisfied as follows: If Mary kicked John's leg, it entails that Mary kicked John, (ii) entailment in possessor agreement results from theta-feature sharing; specifically, the whole DP and the possessor DP share the same theta role, and (iii) Possessor nominals are marked with accusative (or nominative) case when they are assigned internal theta role from the predicate directly.
Kang, Tae Wook;Kim, Ji Eun;Hong, Chang Hee;Hwa, Cho Gun
International conference on construction engineering and project management
/
2015.10a
/
pp.680-681
/
2015
This study develops an algorithm that automatically performs reverse engineering on three-dimensional (3D) sweeping shapes using a user's pre-defined feature templates and 3D point cloud data (PCD) of sweeping shapes. Existing methods extract 3D sweeping shapes by extracting points on a PCD cross section together with the center point in order to perform curve fitting and connect the center points. However, a drawback of existing methods is the difficulty of creating a 3D sweeping shape in which the user's preferred feature center points and parameters are applied. This study extracts shape features from cross-sectional points extracted automatically from the PCD and compared with pre-defined feature templates for similarities, thereby acquiring the most similar template cross-section. Fitting the most similar template cross-section to sweeping shape modeling makes the reverse engineering process automatic.
Journal of the Korea Institute of Building Construction
/
v.21
no.2
/
pp.165-174
/
2021
The construction industry causes the most accidents and fatalities among all industries. Although many efforts have been made to reduce safety accidents in construction, the study on the lost workdays that return to work place is insufficient. Therefore, this study proposes a model that classifies the lost workdays lost into moderate and severity, and derives the importance of variable and analyzes important factors through the trained random forest model. We analyze the learning process of the random forest which is a black box model, and extracted important variables that impact on the severity of the lost workdays through the extracted feature importance. The factors existing inside were analyzed through the extracted variables. The purpose of this study is to analyze the accident case data at the construction site through a random forest model and to review variables that have a high impact on the lost workdays. In the future, this sutdy can apply to improve construction safety management and reduce the accident of industrial accidents.
We propose a method to construct composite feature vector based on discriminant analysis for face recognition. For this, we first extract the holistic- and local-features from whole face images and local images, which consist of the discriminant pixels, by using a discriminant feature extraction method. In order to utilize both advantages of holistic- and local-features, we evaluate the amount of the discriminative information in each feature and then construct a composite feature vector with only the features that contain a large amount of discriminative information. The experimental results for the FERET, CMU-PIE and Yale B databases show that the proposed composite feature vector has improvement of face recognition performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.