• Title/Summary/Keyword: feature combination

Search Result 510, Processing Time 0.026 seconds

Feature Combination and Selection Using Genetic Algorithm for Character Recognition (유전 알고리즘을 이용한 특징 결합과 선택)

  • Lee Jin-Seon
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.5
    • /
    • pp.152-158
    • /
    • 2005
  • By using a combination of different feature sets extracted from input character patterns, we can improve the character recognition system performance. To reduce the dimensionality of the combined feature vector, we conduct the feature selection. This paper proposes a general framework for the feature combination and selection for character recognition problems. It also presents a specific design for the handwritten numeral recognition. Tn the design, DDD and AGD feature sets are extracted from handwritten numeral patterns, and a genetic algorithm is used for the feature selection. Experimental result showed a significant accuracy improvement by about 0.7% for the CENPARMI handwrittennumeral database.

  • PDF

Korean Parsing Model using Various Features of a Syntactic Object (문장성분의 다양한 자질을 이용한 한국어 구문분석 모델)

  • Park So-Young;Kim Soo-Hong;Rim Hae-Chang
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.743-748
    • /
    • 2004
  • In this paper, we propose a probabilistic Korean parsing model using a syntactic feature, a functional feature, a content feature, and a site feature of a syntactic object for effective syntactic disambiguation. It restricts grammar rules to binary-oriented form to deal with Korean properties such as variable word order and constituent ellipsis. In experiments, we analyze the parsing performance of each feature combination. Experimental results show that the combination of different features is preferred to the combination of similar features. Besides, it is remarkable that the function feature is more useful than the combination of the content feature and the size feature.

Audio Fingerprint Retrieval Method Based on Feature Dimension Reduction and Feature Combination

  • Zhang, Qiu-yu;Xu, Fu-jiu;Bai, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.522-539
    • /
    • 2021
  • In order to solve the problems of the existing audio fingerprint method when extracting audio fingerprints from long speech segments, such as too large fingerprint dimension, poor robustness, and low retrieval accuracy and efficiency, a robust audio fingerprint retrieval method based on feature dimension reduction and feature combination is proposed. Firstly, the Mel-frequency cepstral coefficient (MFCC) and linear prediction cepstrum coefficient (LPCC) of the original speech are extracted respectively, and the MFCC feature matrix and LPCC feature matrix are combined. Secondly, the feature dimension reduction method based on information entropy is used for column dimension reduction, and the feature matrix after dimension reduction is used for row dimension reduction based on energy feature dimension reduction method. Finally, the audio fingerprint is constructed by using the feature combination matrix after dimension reduction. When speech's user retrieval, the normalized Hamming distance algorithm is used for matching retrieval. Experiment results show that the proposed method has smaller audio fingerprint dimension and better robustness for long speech segments, and has higher retrieval efficiency while maintaining a higher recall rate and precision rate.

The Important Frequency Band Selection and Feature Vecotor Extraction System by an Evolutional Method

  • Yazama, Yuuki;Mitsukura, Yasue;Fukumi, Minoru;Akamatsu, Norio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2209-2212
    • /
    • 2003
  • In this paper, we propose the method to extract the important frequency bands from the EMG signal, and for generation of feature vector using the important frequency bands. The EMG signal is measured with 4 sensor and is recorded as 4 channel’s time series data. The same frequency bands from 4 channel’s frequency components are selected as the important frequency bands. The feature vector is calculated by the function formed using the combination of selected same important frequency bands. The EMG signals acquired from seven wrist motion type are recognized by changing into the feature vector formed. Then, the extraction and generation is performed by using the double combination of the genetic algorithm (GA) and the neural network (NN). Finally, in order to illustrate the effectiveness of the proposed method, computer simulations are done.

  • PDF

Design of a Feature-based Multi-viewpoint Design Automation System

  • Lee, Kwang-Hoon;McMahon, Chris A.;Lee, Kwan-H.
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.67-75
    • /
    • 2003
  • Viewpoint-dependent feature-based modelling in computer-aided design is developed for the purposes of supporting engineering design representation and automation. The approach of this paper uses a combination of a multi-level modelling approach. This has two stages of mapping between models, and the multi-level model approach is implemented in three-level architecture. Top of this level is a feature-based description for each viewpoint, comprising a combination of form features and other features such as loads and constraints for analysis. The middle level is an executable representation of the feature model. The bottom of this multi-level modelling is a evaluation of a feature-based CAD model obtained by executable feature representations defined in the middle level. The mappings involved in the system comprise firstly, mapping between the top level feature representations associated with different viewpoints, for example for the geometric simplification and addition of boundary conditions associated with moving from a design model to an analysis model, and secondly mapping between the top level and the middle level representations in which the feature model is transformed into the executable representation. Because an executable representation is used as the intermediate layer, the low level evaluation can be active. The example will be implemented with an analysis model which is evaluated and for which results are output. This multi-level modelling approach will be investigated within the framework aimed for the design automation with a feature-based model.

Extraction of Attentive Objects Using Feature Maps (특징 지도를 이용한 중요 객체 추출)

  • Park Ki-Tae;Kim Jong-Hyeok;Moon Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.5 s.311
    • /
    • pp.12-21
    • /
    • 2006
  • In this paper, we propose a technique for extracting attentive objects in images using feature maps, regardless of the complexity of images and the position of objects. The proposed method uses feature maps with edge and color information in order to extract attentive objects. We also propose a reference map which is created by integrating feature maps. In order to create a reference map, feature maps which represent visually attentive regions in images are constructed. Three feature maps including edge map, CbCr map and H map are utilized. These maps contain the information about boundary regions by the difference of intensity or colors. Then the combination map which represents the meaningful boundary is created by integrating the reference map and feature maps. Since the combination map simply represents the boundary of objects we extract the candidate object regions including meaningful boundaries from the combination map. In order to extract candidate object regions, we use the convex hull algorithm. By applying a segmentation algorithm to the area of candidate regions to separate object regions and background regions, real object regions are extracted from the candidate object regions. Experiment results show that the proposed method extracts the attentive regions and attentive objects efficiently, with 84.3% Precision rate and 81.3% recall rate.

Classifier Combination Based Source Identification for Cell Phone Images

  • Wang, Bo;Tan, Yue;Zhao, Meijuan;Guo, Yanqing;Kong, Xiangwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.5087-5102
    • /
    • 2015
  • Rapid popularization of smart cell phone equipped with camera has led to a number of new legal and criminal problems related to multimedia such as digital image, which makes cell phone source identification an important branch of digital image forensics. This paper proposes a classifier combination based source identification strategy for cell phone images. To identify the outlier cell phone models of the training sets in multi-class classifier, a one-class classifier is orderly used in the framework. Feature vectors including color filter array (CFA) interpolation coefficients estimation and multi-feature fusion is employed to verify the effectiveness of the classifier combination strategy. Experimental results demonstrate that for different feature sets, our method presents high accuracy of source identification both for the cell phone in the training sets and the outliers.

A New Covert Visual Attention System by Object-based Spatiotemporal Cues and Their Dynamic Fusioned Saliency Map (객체기반의 시공간 단서와 이들의 동적결합 된돌출맵에 의한 상향식 인공시각주의 시스템)

  • Cheoi, Kyungjoo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.460-472
    • /
    • 2015
  • Most of previous visual attention system finds attention regions based on saliency map which is combined by multiple extracted features. The differences of these systems are in the methods of feature extraction and combination. This paper presents a new system which has an improvement in feature extraction method of color and motion, and in weight decision method of spatial and temporal features. Our system dynamically extracts one color which has the strongest response among two opponent colors, and detects the moving objects not moving pixels. As a combination method of spatial and temporal feature, the proposed system sets the weight dynamically by each features' relative activities. Comparative results show that our suggested feature extraction and integration method improved the detection rate of attention region.

Binary classification by the combination of Adaboost and feature extraction methods (특징 추출 알고리즘과 Adaboost를 이용한 이진분류기)

  • Ham, Seaung-Lok;Kwak, No-Jun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.4
    • /
    • pp.42-53
    • /
    • 2012
  • In pattern recognition and machine learning society, classification has been a classical problem and the most widely researched area. Adaptive boosting also known as Adaboost has been successfully applied to binary classification problems. It is a kind of boosting algorithm capable of constructing a strong classifier through a weighted combination of weak classifiers. On the other hand, the PCA and LDA algorithms are the most popular linear feature extraction methods used mainly for dimensionality reduction. In this paper, the combination of Adaboost and feature extraction methods is proposed for efficient classification of two class data. Conventionally, in classification problems, the roles of feature extraction and classification have been distinct, i.e., a feature extraction method and a classifier are applied sequentially to classify input variable into several categories. In this paper, these two steps are combined into one resulting in a good classification performance. More specifically, each projection vector is treated as a weak classifier in Adaboost algorithm to constitute a strong classifier for binary classification problems. The proposed algorithm is applied to UCI dataset and FRGC dataset and showed better recognition rates than sequential application of feature extraction and classification methods.

Feature Compensation Method Based on Parallel Combined Mixture Model (병렬 결합된 혼합 모델 기반의 특징 보상 기술)

  • 김우일;이흥규;권오일;고한석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.603-611
    • /
    • 2003
  • This paper proposes an effective feature compensation scheme based on speech model for achieving robust speech recognition. Conventional model-based method requires off-line training with noisy speech database and is not suitable for online adaptation. In the proposed scheme, we can relax the off-line training with noisy speech database by employing the parallel model combination technique for estimation of correction factors. Applying the model combination process over to the mixture model alone as opposed to entire HMM makes the online model combination possible. Exploiting the availability of noise model from off-line sources, we accomplish the online adaptation via MAP (Maximum A Posteriori) estimation. In addition, the online channel estimation procedure is induced within the proposed framework. For more efficient implementation, we propose a selective model combination which leads to reduction or the computational complexities. The representative experimental results indicate that the suggested algorithm is effective in realizing robust speech recognition under the combined adverse conditions of additive background noise and channel distortion.