Browse > Article

Extraction of Attentive Objects Using Feature Maps  

Park Ki-Tae (Department of Computer Science and Engineering, Hanyang University)
Kim Jong-Hyeok (KODICOM Co., LTD)
Moon Young-Shik (Department of Computer Science and Engineering, Hanyang University)
Publication Information
Abstract
In this paper, we propose a technique for extracting attentive objects in images using feature maps, regardless of the complexity of images and the position of objects. The proposed method uses feature maps with edge and color information in order to extract attentive objects. We also propose a reference map which is created by integrating feature maps. In order to create a reference map, feature maps which represent visually attentive regions in images are constructed. Three feature maps including edge map, CbCr map and H map are utilized. These maps contain the information about boundary regions by the difference of intensity or colors. Then the combination map which represents the meaningful boundary is created by integrating the reference map and feature maps. Since the combination map simply represents the boundary of objects we extract the candidate object regions including meaningful boundaries from the combination map. In order to extract candidate object regions, we use the convex hull algorithm. By applying a segmentation algorithm to the area of candidate regions to separate object regions and background regions, real object regions are extracted from the candidate object regions. Experiment results show that the proposed method extracts the attentive regions and attentive objects efficiently, with 84.3% Precision rate and 81.3% recall rate.
Keywords
attentive object; feature map; reference map; combination map; segmentation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Luo and A. Singhal, 'On Measuring Low Level Saliency in Photographic Images,' IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp.84-89, 2000   DOI
2 W. Osberger and A.J. Maeder, 'Automatic Identification of Perceptually Important Regions in An Image,' IEEE International Conference on Pattern Recognition, pp.701-704, 1998   DOI
3 C. Carson, M. Thomas, S. Belongie, J.M. Hellerstein and J. Malik, 'Blobworld: A System for Region-based Image Indexing and Retrieval,' International Conference of Visual Information System, Vol. 3, pp.509-516, 1999
4 Y. Hu, X. Xie, W. Y Ma, L. T. Chia, and D. Rajan, 'Salient Region Detection Using Weighted Feature Maps Based on The Human Visual Attention Model,' Proceedings of the Fifth IEEE Pacific-Rim Corference on Multimedia, Vol. 2, pp.993-1000, 2004
5 W.Y. Ma and B.S. Manjunath 'Netra: A Tool-box for Navigating Large Image Database,' IEEE Conference on Image Processing, Vol. 1, pp.568-571, 1997
6 J. Smith and S. Chang 'VisualSEEK: A Fully Automated Content-Based Image Query System,' ACM Multimedia, pp.87-98, 1996
7 M. Flicker, H. Sawhneyy, W. Niblack, J. Ashley and P. Yanker 'Query by Image and Video Content: The QBIC System,' IEEE Computer Special Issue on Content Based Picture Retrieval System, Vol. 28, pp.23-32, 1995   DOI   ScienceOn
8 A.W.M Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, 'Content Based Image Retrieval at The End of The Early Years,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol.22, pp.1349-1380, Dec. 2000   DOI   ScienceOn
9 S. Michael, 'Next Generation Web Searches for Visual Content,' IEEE Computer, pp.46-52, Nov. 2000   DOI   ScienceOn
10 Y. Rui and T.S.Huang, 'Image Retrieval : Current Techniques, Promising Directions, and Open Issues,' Jouranl of Visual Communication and Image Representation, vol. 10, pp.39-62, 1999   DOI   ScienceOn
11 C. M. Privitera and L.W Stark, 'Algorithms for Defining Visual Regions of Interest: Comparison with Eye Fixations,' IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 22, pp.970-982, Sep. 2000   DOI   ScienceOn
12 A. M. Andrew, 'Another Efficient Algorithm for Convex Hulls in Two Dimensions,' Information Processing Letters, pp. 216-219, 1979   DOI   ScienceOn
13 D. Wang, 'Unsupervised Video Segmentation Based on Watersheds and Temporal Tracking,' IEEE Transaction on Circuits and System for Video Technology, Vol. 2, pp.539-546, 1998   DOI   ScienceOn
14 J. R. Serra and J. B. Subirana, 'Texture Frame Curves and Regions of Attention Using Adaptive Non-cartesian Networks,' Pattern Recognition, vol. 32, pp.503-515, Mar. 1999   DOI   ScienceOn
15 L. Itti, C. Koch, and E. Niebur, 'A Model of Saliency-based Visual Attention for Rapid Scene Analysis,' IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol.20, No. 11, pp.1254- 1259, 1998   DOI   ScienceOn
16 T. Tamaki, T. Yamamura, and N. Ohnishi, 'Image Segmentation and Object Extraction Based on Geometric Features of Regions,' SPIE Conference on Visual Communications and Image Processing, vol. 3653, pp.937-945, Jan. 1999   DOI
17 Q. Huang, B. Dom, D. Steels, J. Ashely, and W. Niblack, 'Foreground background segmentation of color images by integration of multiple cues,' International Conference on Image Processing, vol. 1, pp.246-249, 1995   DOI
18 J. Senders, 'Distribution of Attention in Static and Dynamic Scenes,' Proceedings of SPIE Human Vision and Electronic Imaging II, vol. 3016, pp.186-194, Feb. 1997   DOI
19 Y. Lu and H. Guo, 'Background Removal in Image Indexing and Retrieval,' Proceedings of 10th International Conference on Image Analysis and Processing, pp.933-938, Sep. 1999   DOI