• Title/Summary/Keyword: fault-tolerant controller

검색결과 84건 처리시간 0.024초

가변시간비중을 갖는 내고장성 제어 (Fault Tolerant Control with Variable Time Weight)

  • Hee Gyoo Lee;Zeungnam Bien
    • 전자공학회논문지B
    • /
    • 제29B권4호
    • /
    • pp.22-30
    • /
    • 1992
  • A redundant control scheme which can maintain its tracking capability in the case of a controller failure is proposed for the industrial applications which need high reliability with fault-tolerance. It consists of two identical controllers and a switching mechanism which includes failure detection and reconfiguration algorithm. The new detection method against controller failure using fuzzy logic enables the detection of controller failures without failure assumptions through the instability of the failed controller. The failed controller is smoothly removed from the control loop by reducing time weight of the failed controller.

  • PDF

Fault Diagnosis and Fault-Tolerant Control of DC-link Voltage Sensor for Two-stage Three-Phase Grid-Connected PV Inverters

  • Kim, Gwang-Seob;Lee, Kyo-Beum;Lee, Dong-Choon;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.752-759
    • /
    • 2013
  • This paper proposes a method for fault diagnosis and fault-tolerant control of DC-link voltage sensor for two-stage three-phase grid-connected PV inverters. Generally, the front-end DC-DC boost converter tracks the maximum power point (MPP) of PV array and the rear-end DC-AC inverter is used to generate a sinusoidal output current and keep the DC-link voltage constant. In this system, a sensor is essential for power conversion. A sensor fault is detected when there is an error between the sensed and estimated values, which are obtained from a DC-link voltage sensorless algorithm. Fault-tolerant control is achieved by using the estimated values. A deadbeat current controller is used to meet the dynamic characteristic of the proposed algorithm. The proposed algorithm is validated by simulation and experiment results.

A Fault Tolerant Control Technique for Hybrid Modular Multi-Level Converters with Fault Detection Capability

  • Abdelsalam, Mahmoud;Marei, Mostafa Ibrahim;Diab, Hatem Yassin;Tennakoon, Sarath B.
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.558-572
    • /
    • 2018
  • In addition to its modular nature, a Hybrid Modular Multilevel Converter (HMMC) assembled from half-bridge and full-bridge sub-modules, is able to block DC faults with a minimum number of switching devices, which makes it attractive for high power applications. This paper introduces a control strategy based on the Root-Least Square (RLS) algorithm to estimate the capacitor voltages instead of using direct measurements. This action eliminates the need for voltage transducers in the HMMC sub-modules and the associated communication link with the central controller. In addition to capacitor voltage balancing and suppression of circulating currents, a fault tolerant control unit (FTCU) is integrated into the proposed strategy to modify the parameters of the HMMC controller. On advantage of the proposed FTCU is that it does not need extra components. Furthermore, a fault detection unit is adapted by utilizing a hybrid estimation scheme to detect sub-module faults. The behavior of the suggested technique is assessed using PSCAD offline simulations. In addition, it is validated using a real-time digital simulator connected to a real time controller under various normal and fault conditions. The proposed strategy shows robust performance in terms of accuracy and time response since it succeeds in stabilizing the HMMC under faults.

Fault-tolerant control system for once-through steam generator based on reinforcement learning algorithm

  • Li, Cheng;Yu, Ren;Yu, Wenmin;Wang, Tianshu
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3283-3292
    • /
    • 2022
  • Based on the Deep Q-Network(DQN) algorithm of reinforcement learning, an active fault-tolerance method with incremental action is proposed for the control system with sensor faults of the once-through steam generator(OTSG). In this paper, we first establish the OTSG model as the interaction environment for the agent of reinforcement learning. The reinforcement learning agent chooses an action according to the system state obtained by the pressure sensor, the incremental action can gradually approach the optimal strategy for the current fault, and then the agent updates the network by different rewards obtained in the interaction process. In this way, we can transform the active fault tolerant control process of the OTSG to the reinforcement learning agent's decision-making process. The comparison experiments compared with the traditional reinforcement learning algorithm(RL) with fixed strategies show that the active fault-tolerant controller designed in this paper can accurately and rapidly control under sensor faults so that the pressure of the OTSG can be stabilized near the set-point value, and the OTSG can run normally and stably.

ACTIVE FAULT-TOLERANT CONTROL OF INDUCTION MOTOR DRIVES IN EV AND HEV AGAINST SENSOR FAILURES USING A FUZZY DECISION SYSTEM

  • Benbouzid, M.E.H.;Diallo, D.;Zeraoulia, M.;Zidani, F.
    • International Journal of Automotive Technology
    • /
    • 제7권6호
    • /
    • pp.729-739
    • /
    • 2006
  • This paper describes an active fault-tolerant control system for an induction motor drive that propels an Electrical Vehicle(EV) or a Hybrid one(HEV). The proposed system adaptively reorganizes itself in the event of sensor loss or sensor recovery to sustain the best control performance given the complement of remaining sensors. Moreover, the developed system takes into account the controller transition smoothness in terms of speed and torque transients. In this paper which is the sequel of (Diallo et al., 2004), we propose to introduce more advanced and intelligent control techniques to improve the global performance of the fault-tolerant drive for automotive applications(e.g. EVs or HEVs). In fact, two control techniques are chosen to illustrate the consistency of the proposed approach: sliding mode for encoder-based control; and fuzzy logics for sensorless control. Moreover, the system control reorganization is now managed by a fuzzy decision system to improve the transitions smoothness. Simulations tests, in terms of speed and torque responses, have been carried out on a 4-kW induction motor drive to evaluate the consistency and the performance of the proposed fault-tolerant control approach.

분산형 PLC 시스템에서의 고장 허용 제어 (Fault Tolerant Control for Distributed Programmable Logic Controller System)

  • 정영미;정석권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2197-2199
    • /
    • 2003
  • Most of distributed PLC system is secured reliability of the system by fully duplicated controller. But it costs too much. In this paper, we proposed fault tolerant control using minimum spare controllers. First, the system is modeled using Galois field. Next, we designed additional spare controllers using the parity code of two dimensions. Finally, the algorithm for producing estimated output in remote I/O when the fault occurs was suggested. This method will be applied to an automatic system in order to increase reliability and improve cost performance.

  • PDF

A Realization Method of Fault-tolerant Control of Flexible Arm under Sensor Fault by Using an Adaptive Sensor Signal Observer

  • Izumikawa Yu;Yubai Kazuhiro;Hirai Junji
    • Journal of Power Electronics
    • /
    • 제6권1호
    • /
    • pp.8-17
    • /
    • 2006
  • In this paper, we propose a fault-tolerant control system for the position control and vibration suppression of a flexible arm robot. The proposed control system has a strain gauge sensor signal observer based on a reaction force observer and detects a fault by monitoring an estimated error. In order to improve the estimation accuracy, the plant parameters included in the sensor signal observer are updated by using the strain gauge sensor signal in normal time through the adaptive law. After fault detection, the proposed control system exchanges the faulty sensor signal for the estimated one and switches to a fault mode controller so as to maintain the stability and the control performance. We confirmed the effectiveness of the proposed control system through several experiments.

CONTROL PHILOSOPHY AND ROBUSTNESS OF ELECTRONIC STABILITY PROGRAM FOR THE ENHANCEMENT OF VEHICLE STABILITY

  • Kim, D.S.;Hwang, I.Y.
    • International Journal of Automotive Technology
    • /
    • 제7권2호
    • /
    • pp.201-208
    • /
    • 2006
  • This paper describes the control philosophy of ESP(Electronic Stability Program) which consists of the stability control the fault diagnosis and the fault tolerant control. Besides the functional performance of the stability control, robustness of control and fault diagnosis is focused to avoid the unnecessary activation of the controller. The look-up tables are mentioned to have the accurate target yaw rate of the vehicle and obtained from vehicle tests for the whole operation range of the steering wheel angle and the vehicle speed. The wheel slip control with a design goal of wheel slip invariance is implemented for the yaw compensation and the target wheel slip is determined by difference between the target yaw rate and actual yaw rate. Since the ESP has a high severity level and the robust control is required, the robustness margin for the stability control is determined according to several uncertainties and the robust fault diagnosis is performed. Both computer simulation and test results are shown in this paper.

Fault Tolerant Actuator for Steer-By-Wire Application

  • Mutschler P.;Krautstrunk A.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.741-745
    • /
    • 2001
  • Reliability and safety of steer-by-wire concepts can be achieved by redundant designs. This paper discusses the design of a fault tolerant concept for a force feedback actuator with a standard three-phase PMSM. In contrast to usual drives, the phases of the machine are separated electrically. This design allows driving the machine with two instead of three phases in case of a fault. A superimposed torque controller adjusts the influence of fault currents and torque harmonics in two-phase operation and guarantees smooth torque at the steering wheel

  • PDF

기본 모드를 침해하는 과도 고장이 존재하는 입력/출력 비동기 순차 회로에 대한 내고장성 제어 (Fault-Tolerant Control of Input/Output Asynchronous Sequential Circuits with Transient Faults Violating Fundamental Mode)

  • 양정민;곽성우
    • 한국전자통신학회논문지
    • /
    • 제17권3호
    • /
    • pp.399-408
    • /
    • 2022
  • 본 논문에서는 기본 모드 원리를 침해하는 과도 고장이 존재하는 입력/출력 비동기 순차 회로의 내고장성 교정 제어 시스템을 제안한다. 비동기 순차 회로의 과도 천이 과정에서 발생하는 비-기본 모드 고장을 극복하기 위해서는 고장에 의한 상태 천이가 종료되는 시점을 알아야 하며, 회로를 고장 상태로부터 원래 도달해야 하는 상태와 출력 등가적인 상태로 보내기 위한 교정 동작을 구현해야 한다. 본 논문에서는 이러한 고장 탐지 및 극복을 구현할 수 있는 출력 피드백 교정 제어기의 존재 조건을 규명한다. FPGA 실험을 통해 제안된 제어 시스템의 설계 과정을 제시하고 응용 가능성을 검증한다.