• 제목/요약/키워드: fault type

검색결과 992건 처리시간 0.026초

저항형 고온초전도 소자의 스위칭동작을 이용한 브리지타입 고온초전도 전류제한기의 동작 특성 (Operational Characteristics of Bride Type SFCL Using Switching Operation of Resistive Type HTSC Element)

  • 임성훈;박충렬;이종화;고석철;박형민;최효상;한병성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.83-85
    • /
    • 2004
  • We proposed the bridge type fault current limiter(FCL) using switching operation of high-Tc superconducting(HTSC) thin film. The proposed bridge type FCL consists of HTSC thin film, a diode bridge and a dc reactor. The controller for the operation of an interrupter is required in the conventional bridge type FCL to prevent the continuous increase of fault current after a fault happens. On the other hand, the proposed bridge type FCL can limit the fault current without the interrupter and the controller for its operation by the resistance generated when the gradually increased fault current exceeds HTSC thin film's critical current. We calculated the time when the gradually increased fault current started to be limited by the resistance generated in HTSC thin film after a fault happened and confirmed that it could be dependent on the amplitude of source voltage. The experimental results well agreed with the calculated ones from simulation.

  • PDF

분리된 삼상자속구속형 전류제한기의 인덕턴스 변화에 따른 전류제한 특성 분석 (Analysis of Fault Current Limiting Characteristics According to Variation of Inductances in Separated Three-phase Flux-lock Type SFCL)

  • 두승규;두호익;김민주;박충렬;김용진;이동혁;한병성
    • 한국전기전자재료학회논문지
    • /
    • 제22권6호
    • /
    • pp.522-525
    • /
    • 2009
  • We investigated the fault current characteristics of the separates three-phase flux-lock type superconducting fault current limiter(SFCL) according to the variation of inductances. The single-phase flux-lock type SFCL consists of two coils. The primary coil is wound in parallel to the secondary coil on an iron core. And superconductor is series connected on secondary coil. Superconductor is using the YBCO coated conductor. The separated three-phase flux-lock type SFCL consists of single-phase flux-phase type SFCL in each phase. To analyze the current limiting characteristics of a three-phase flux-lock type SFCL, the short circuit experiments were carried out fault such as the triple line-to-ground fault. The experimental result shows that fault current limiting characteristics of additive polarity winding was better than subtractive polarity winding and when the inductances of coil 2 was lower, resistances of YBCO CC was more generated.

신경회로망을 이용한 송전계통의 고속계전기용 고장유형분류 및 고장거리 추정방법 (Fault Type Classification and Fault Distance Estimation for High Speed Relaying Using Neural Networks in Power Transmission Systems)

  • 이화석;윤재영;박준호;장병태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.808-810
    • /
    • 1996
  • In this paper, neural network, which has learning capability, is used for fault type classification and fault section estimation for high speed relaying. The potential of the neural network approach is demonstrated by simulation using ATP. The instantaneous values of voltages and currents are used the inputs of neural networks. This approach determines the fault section directly. In this paper, back-propagation network(BPN) is used for fault type classification and fault section estimation and can use for high speed relaying because it determines fault section within a few msec.

  • PDF

Transient Fault Current Limiting Characteristics of a Transformer Type SFCL Using an Additional Magnetically Coupled Circuit

  • Lim, Seung-Taek;Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권1호
    • /
    • pp.42-45
    • /
    • 2017
  • In this paper, a transformer type SFCL (superconducting fault current limiter) using an additional magnetically coupled circuit was suggested. Its transient fault current limiting characteristics, due to the winding direction of additional coupled circuit, were analyzed through fault current limiting tests. The suggested transformer type SFCL was composed of the primary winding, and one secondary winding wound on the same iron core together with an additional magnetically coupled circuit. That circuit consists of the other secondary winding together with the other SC (superconducting) element connected in parallel with its other secondary winding. As one of the effective design parameters to affect the transient fault current of the SFCL, the fault current limiting tests of the suggested SFCL were carried out considering the winding direction of its additional coupled circuit. It was confirmed that, through the analysis on the fault current tests of the SFCL, the quench sequence of two SC elements comprising the suggested SFCL could be adjusted by the winding direction of the additional coupled circuit.

Satellite Fault Detection and Isolation Scheme with Modified Adaptive Fading EKF

  • Lim, Jun Kyu;Park, Chan Gook
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1401-1410
    • /
    • 2014
  • This paper presents a modified adaptive fading EKF (AFEKF) for sensor fault detection and isolation in the satellite. Also, the fault detection and isolation (FDI) scheme is developed in three phases. In the first phase, the AFEKF is modified to increase sensor fault detection performance. The sensor fault detection and sensor selection method are proposed. In the second phase, the IMM filer with scalar penalty is designed to detect wherever actuator faults occur. In the third phase of the FDI scheme, the sub-IMM filter is designed to identify the fault type which is either the total or partial fault. An important feature of the proposed FDI scheme can decrease the number of filters for detecting sensor fault. Also, the proposed scheme can classify fault detection and isolation as well as fault type identification.

변압기 권선을 이용한 자속구속형 초전도 전류제한기의 전류제한 특성 분석 (Analysis on Current Limiting Characteristics of Flux-Lock Type SFCL Using a Transformer Winding)

  • 한태희;임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제24권2호
    • /
    • pp.136-140
    • /
    • 2011
  • The fault current limiting characteristics of the flux-lock type superconducting fault current limiter (SFCL) using a transformer winding were investigated. The suggested flux-lock type SFCL consists of two parallel connected coils on an iron core and the transformer winding connected in series with one of two coils. In this SFCL, the high-TC superconducting (HTSC) element was connected with the secondary side of the transformer. The short-circuit experimental devices to analyze the fault current limiting characteristics of the flux-lock type SFCL using the transformer winding were constructed. Through the short-circuit tests, the flux-lock type SFCL using transformer winding was shown to perform more effective fault current limiting operation compared to the previous flux-lock type SFCL without the transformer winding from the viewpoint of the quench occurrence and the recovery time of the HTSC element.

Analysis on operation characteristics and power burdens of the double quench trigger type SFCLs

  • Lim, Seung-Taek;Lim, Sung-Hun;Han, Tae-Hee
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권2호
    • /
    • pp.33-37
    • /
    • 2017
  • To protect the power systems from fault current, the rated protective equipment should be installed. However growth of power system scale and concentration of loads caused the large fault current in power transmission system and distribution system. The capacities of installed protective equipment have been exceeded the due to increase of fault current. This increase is not temporary phenomenon but will be steadily as long as the industry develops. The power system operator need a counter-measurement for safety, so superconducting fault current limiter (SFCL) has been received attention as effective solutions to reduce the fault current. For the above reasons various type SFCLs have been studied recently. In this paper, operation characteristics and power burden of trigger type SFCL is studied. The trigger type SFCL has been used for real system research in many countries. Another trigger type SFCL (double quench trigger type SFCL) is also studied. For this paper, short circuit test is performed.

고장에 견디는 공간형 매니퓰레이터의 최적설계 (Optimal Design of Fault-Tolerant Spatial Manipulators)

  • 이병주;김동구;김희국
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.605-610
    • /
    • 1994
  • Optimal design of fault-tolerant, spatial type maniplators is treated in this paper. Design objective is to guarantte three degree-of-freedom translational motions in the task space, upon failure of one arbitrary joint of 4 degree-of -freedom manipulators. Realizing the nonfault-tolerant characteristics of current, wrist-type industrial manipulators, several 4 degree-of-freedom redundant structures with one joint redundancy are suggested as the fault-tolerant spatial -type manipulators. Fault-tolerant charactersitics are investigated basedon the analysis of the self-motion and the null-space elements, of a redundant manipulator. Finally, in order to maximize the fault-tolerant capability,optimal design is performed for a spatial-type manipulator with respect to the global isotropic index, and the performance enhancement of the optimized case is shown by simulation.

  • PDF

R-type HTS-FCL Model considering transient characteristics

  • Yoon Jae Young;Lee Seung Ryul;Kim Jong Yul
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제7권2호
    • /
    • pp.35-38
    • /
    • 2005
  • One of the most serious problems in KEPCO system operation is higher fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current such as isolations of bus ties, enhancement of SCC of circuit breaker, applications of HVDC-BTB(Back to Back) and FCL(fault current limiter). But, these alternatives have some drawbacks in viewpoints of system stability and cost. As the superconductivity technology has been developed, the resistance type HTS-FCL(High Temperature Superconductor Fault Current Limiter) can be one of the most attractive alternatives to solve the fault current problem. To evaluate the accurate transient performance of resistance type HTS-FCL, it is needed that the dynamic simulation model considering transient characteristics during quenching and recovery state. Under this background, this paper presents the EMTDC model for resistance type HTS-FCL considering the nonlinear characteristic of final resistance value when quenching and recovery phenomena by fault current injection and clearing occurs.

대칭분 전압을 이용한 송전선로 보호용 고장상 선택 알고리즘 (Phase Selection Algorithm using Sequence Voltages for Transmission Line Protection)

  • 이명수;김수남;이재규;유석구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.124-126
    • /
    • 2001
  • A reliable fault type identification (phase selection) plays a very important role in transmission line protection, particularly in Extra High Voltage(EHV) networks. The conventional fault type identification algorithm used the phase difference between positive and negative sequence current excluding load current. But, it is difficult to pick out only fault current since we can not know when a fault occurs and identify the fault type in weak-infeed conditions that dominate zero-sequence current in phase current. The proposed algorithm can identify the accurately fault type using the sum of unit vectors which are calculated by positive-sequence votage and negative-sequence voltage.

  • PDF