• 제목/요약/키워드: fault type

검색결과 992건 처리시간 0.024초

고온초전도 전류제한기의 초기사고전류 제한시점 분석 (Analysis of the Initial Fault Current Limiting Point of the SFCLs)

  • 박충렬;두호익;두승규;김용진;김민주;조용선;최효상;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.292-292
    • /
    • 2008
  • The superconducting fault current limiter(SFCL) can be used to limit fault current level in electrical transmission line and power system. Up to now, there are several kinds of SFCL that have proposed and it is expects that they will be applied to appropriated position considering their own properties; initial fault current limiting instant and the current limiting characteristics. In this paper, we investigated the initial fault current limiting instant and the amplitude of initial fault current in the resistive type, the flux-lock type, the flux-coupling type and the transformer type SFCL. Experiment results show that the initial fault current limiting instant and the amplitude of initial fault current of the SFCLs are dependant on the ratio of inductance of primary and secondary coils.

  • PDF

코일형 한류소자의 교류손실 특성 (AC Loss Characteristic in the Fault Current Limiting Elements of a Coil Type)

  • 류경우;마용호
    • 한국전기전자재료학회논문지
    • /
    • 제18권4호
    • /
    • pp.370-374
    • /
    • 2005
  • AC loss of a superconducting conductor has a strong influence on the economic viability of a superconducting fault current limiter, which offers an attractive means to limit short circuit current in power systems. Therefore, the AC loss characteristics in several fault current limiting elements of a coil type have been investigated experimentally. The test result shows that AC losses measured in the fault current limiting elements depend on arrangement of a voltage lead. The AC loss of a bifilar coil is smallest among the fault current limiting elements of the coil type. The measured AC loss of the bifilar coil is much smaller than that calculated from Norris's elliptical model. However, the loss measured in a meander, which is frequently used in a resistive fault current limiter, agrees well to the theoretical one.

자율 학습 신경회로망을 이용한 고장상 선은 알고리즘 (The Discrimination of Fault Type by Unsupervised Neural Network)

  • 이재욱;최창열;장병태;이명회;노장현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.384-387
    • /
    • 2004
  • The direction and the type of a fault on a transmission line need to be identified rapidly and correctly, The work described in this paper addresses the problem encountered by a conventional algorithm in a fault type classification in double circuit line, this arises due to a mutual coupling and CT saturation under the fault condition. We present an approach to identify fault type with novel neural network on double circuit transmission line. The neural network based on combined unsupervised training method provides the ability classify the fault type by different patterns of the associated voltages and currents.

  • PDF

자속구속형 고온초전도 전류제한기의 사고초기 제한 전류변화 분석 (Analysis for Variation of Limiting Current at Initial Fault Time in Flux-Lock Type SFCL)

  • 임성훈;최효상;강형곤;고석철;이종화;한병성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.418-420
    • /
    • 2003
  • The fault current limiting characteristics at the initial fault time for flux-lock type high-Tc superconducting fault current limiter(SFCL) were investigated. The amplitude of initial fault current of the flux-lock type SFCL was dependent on the inductance ratio of coil 1 and 2. After fault current limiting mode was analyzed, we compared the calculated value with the experimental one for the initial fault current. The effect of initial fault current due to the inductance ratio of coil 1 and 2 on fault current limiting characteristics was discussed.

  • PDF

모의배전계통에 두 트리거 전류레벨을 이용한 초전도한류기의 전류제한 특성 분석 (Current Limiting Characteristics of a SFCL with Two Triggered Current Limiting Levels in a Simulated Power Distribution System)

  • 고석철;한태희
    • 한국전기전자재료학회논문지
    • /
    • 제26권2호
    • /
    • pp.134-139
    • /
    • 2013
  • When the accident occurred in power distribution system, it needs to control efficiently the fault current according to the fault angle and location. The flux-lock type superconducting fault current limiters (SFCL) can quickly limit when the short circuit accidents occurred and be made the resistance after the fault current. The flux-lock type SFCL has a single triggering element, detects and limits the fault current at the same time regardless of the size of the fault current. However, it has a disadvantage that broken the superconductor element. If the flux-lock type SFCL has separated structure of the triggering element and the limiting element, when large fault current occurs, it can reduce the burden of power and control fault current to adjust impedance. In this paper, this system is composed by triggering element and limiting element to analyze operation of limiting current. When the fault current occurs, we analyzed the limiting and operating current characteristics of the two triggering current level, and the compensation characteristics of bus-voltage sag according to the fault angle and location.

Analysis of Magnetic Field Application Effect on Fault Current Limiting Characteristics of a Flux-lock Type SFCL

  • Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권6호
    • /
    • pp.255-259
    • /
    • 2008
  • The magnetic field application effect on resistance of a high-$T_c$ superconducting (HTSC) element comprising a flux-lock type superconducting fault current limiter (SFCL) was investigated. The YBCO thin film, which was etched into a meander line using a lithography, was used as a current limiting element of the flux-lock type SFCL. To increase the magnetic field applied into HTSC element, the capacitor was connected in series with a solenoid-type magnetic field coil installed in the third winding of the flux-lock type SFCL. There was no magnetic field application effect on the resistance of HTSC element despite the application of larger magnetic field into the HTSC element when a fault happened. The resistance of HTSC element, on the contrary, started to decrease at the point of four periods from a fault instant although the amplitude of the applied magnetic field increased.

30 kVA급 유도형 고온초전도 한류기의 특성 연구 (Study on the Characteristics of 30 kVA Inductive High-Tc Superconducting Fault Current Limier)

  • 이찬주;이승제;강형구;배덕권;안민철;현옥배;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제4권1호
    • /
    • pp.110-113
    • /
    • 2002
  • The high-tc superconducting fault current limiters (SFCL) are studied worldwide to be classified as resistive type or inductive type such as magnetic shielding type and dc reactor type. This Paper deals with an open core type SFCL, a kind of magnetic shielding type SFCL. We manufactured a 30 kVA open core type SFCL. It was modified from the old one with a rated power of 8 kVA. We stacked four superconducting tubes as magnetic shielding material and used the same primary winding as the old one. The experiments were performed with a maximum source voltage of 1 kV. The results show that the fault current in the source voltage of 1 kVrms was reduced to be about 105 Apeak, which was calculated to be about 22 % of the fault current in the system without an SFCL.

저항형 고온초전도 전류제한기의 사고각에 따른 전류제한 특성 분석 (The Analysis of Current Limiting Characteristics Acceding to Fault Angles in the Resistive Type High-Tc Superconducting Fault Current Limiter)

  • 박충렬;임성훈;박형민;이종화;고석철;최효상;한병성;현옥배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.523-526
    • /
    • 2004
  • According to the continuous demand for power and the growth of electric power utilities, the electric power transmission capacity was increased. The increase of the electric power transmission capacity results in an increase of the fault current level a fault happened. So the superconducting fault current limiter(SFCL) has been reached as the countermeasure for the reduction of the fault current. In this paper, we investigate the fault currents characteristics of resistive type SFCL according to fault angles when AC power source applied. As the fault angles increase, the first peak value of fault current decreased lower. On the other hand, the power burden of SFCL increased.

  • PDF

개방철심형 고온초전도한류기의 동작 특성 (Operational Characteristics of a Superconducting Fault Current Limiter with an Open Core)

  • 이찬주;이승제;강형구;김태중;현옥배;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제3권1호
    • /
    • pp.40-44
    • /
    • 2001
  • Recently. the high-tc superconducting fault col-rent limiters (SFCL) are studied worldwide to be classified as a resistive type or an inductive type such as a magnetic shielding type and a inductive type. The high-tc SFCL wish an open core belongs to the magnetic shielding type SFCL. Unlike conventional magnetic shielding type SFCLS it uses the open core to reduce the mechanical vibrations and installation space, The high-tc SFCL with an open core was designed and manufactured by stacking three BSCCO 2212 tubes. It was tested in the maximum source voltage of 400 Vrms. The results such as the reduction of fault current and impedance of the SFCL are described in this paper. The results show that the fault current in the source voltage of 400 Vrms was reduced to be about 123 Apeak. about 3.9 times greater than the normal state current. Also, the impedance of the high-tc SFCL was about 9${\Omega}$ about 9 times greater than the normal state impedance. The impedance of the SFCL appears just after the fault, and its size is dependent on the source voltage. From the impedance, the inductance of the SFCL was calculated.

  • PDF

A numerical study on the feasibility evaluation of a hybrid type superconducting fault current limiter applying thyristors

  • Nam, Seokho;Lee, Woo Seung;Lee, Jiho;Hwang, Young Jin;Ko, Tae Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권4호
    • /
    • pp.26-29
    • /
    • 2013
  • Smart fault current controller (SFCC) proposed in our previous work consists of a power converter, a high temperature superconducting (HTS) DC reactor, thyristors, and a control unit [1]. SFCC can limit and control the current by adjusting firing angles of thyristors when a fault occurs. SFCC has complex structure because the HTS DC reactor generates the loss under AC. To use the DC reactor under AC, rectifier that consists of four thyristors is needed and it increases internal resistance of SFCC. For this reason, authors propose a hybrid type superconducting fault current limiter (SFCL). The hybrid type SFCL proposed in this paper consists of a non-inductive superconducting coil and two thyristors. To verify the feasibility of the proposed hybrid type SFCL, simulations about the interaction of the superconducting coil and thyristors are conducted when fault current flows in the superconducting coil. Authors expect that the hybrid type SFCL can control the magnitude of the fault current by adjusting the firing angles of thyristors after the superconducting coil limits the fault current at first peak.