• Title/Summary/Keyword: fault tree method

Search Result 200, Processing Time 0.028 seconds

One-time Traversal Algorithm to Search Modules in a Fault Tree for the Risk Analysis of Safety-critical Systems (안전필수 계통의 리스크 평가를 위한 일회 순회 고장수목 모듈 검색 알고리즘)

  • Jung, Woo Sik
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.100-106
    • /
    • 2015
  • A module or independent subtree is a part of a fault tree whose child gates or basic events are not repeated in the remaining part of the fault tree. Modules are necessarily employed in order to reduce the computational costs of fault tree quantification. This quantification generates fault tree solutions such as minimal cut sets, minimal path sets, or binary decision diagrams (BDDs), and then, calculates top event probability and importance measures. This paper presents a new linear time algorithm to detect modules of large fault trees. It is shown through benchmark tests that the new method proposed in this study can very quickly detect the modules of a huge fault tree. It is recommended that this method be implemented into fault tree solvers for efficient probabilistic safety assessment (PSA) of nuclear power plants.

A Study on the Construction of Function Tree using Function Deployment (기능 전개 결과를 이용한 Function Tree 구성에 관한 연구)

  • 하성도;이언경;박선주;강달모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.401-406
    • /
    • 2000
  • Fault tree analysis (FTA) is a widely used methodology for reliability analysis. The method is useful in that it suggests a very comprehensive way of describing the hierarchical relations of causes of faults and the corresponding results. However it is difficult to get appropriate fault trees for given products or systems without very profound knowledge and experience. This work aims to develop a methodology of fault tree construction using the results of function deployment for machine parts, which provides an objective way of preparing fault trees. The failure modes are defined to each function network generated by the function deployment method and the fault tree with respect to each viewpoint is constructed by arranging the failure modes. The fault tree is finally obtained by synthesizing the fault trees with respect to each viewpoint. The example of fault tree construction is also shown.

  • PDF

A Methodology for Constructing Function Tree & Fault Tree in Reliability Analysis (신뢰성 분석을 위한 Function Tree 및 Fault Tree 구성 방법에 관한 연구)

  • Ha, Sung-Do;Lee, Eon-Kyung;Kang, Dal-Mo
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.333-338
    • /
    • 2001
  • Fault tree is a widely used methodology for analyzing product reliability. The fault trees are usually constructed using the experiences of expert reliability engineers in top-down approaches and have different structures according to each expert's subjectivity. In this work it is tried to find a general method for the fault tree construction based on the function tree that is the result of product function deployment. Based on the function tree, the method has the advantage of resulting an objective fault tree since the faults are defined as the opposite concept of functions. The fault tree construction of this work consists of the following steps: 1) definition of product primary function with the viewpoints of product operation and configuration, 2) construction of functional relation chart using a grouping algorithm, 3) abstraction of functional block diagram according to operation sequences and configuration of a product, 4) construction of function tree for each viewpoint, and 5) construction of fault tree by matching the function tree and simplification of the result.

  • PDF

A top-down iteration algorithm for Monte Carlo method for probability estimation of a fault tree with circular logic

  • Han, Sang Hoon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.854-859
    • /
    • 2018
  • Calculating minimal cut sets is a typical quantification method used to evaluate the top event probability for a fault tree. If minimal cut sets cannot be calculated or if the accuracy of the quantification result is in doubt, the Monte Carlo method can provide an alternative for fault tree quantification. The Monte Carlo method for fault tree quantification tends to take a long time because it repeats the calculation for a large number of samples. Herein, proposal is made to improve the quantification algorithm of a fault tree with circular logic. We developed a top-down iteration algorithm that combines the characteristics of the top-down approach and the iteration approach, thereby reducing the computation time of the Monte Carlo method.

Development of Automatic Fault Tree Construction System using Digraph (Digraph를 이용한 Fault Tree 자동합성시스템의 개발)

  • Jung, Won-Seok;Lee, Geun-Won;Moon, Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.393-393
    • /
    • 2000
  • FTA(Fault Tree Analysis) is a safety analysis method that focuses on one particular accident or main system failure and provides a method of determining causes of that event. While most of the statistical and cut set analysis have been automated, actual construction of the fault-tree is usually done manually. Manual construction of the fault-tree is extremely time consuming and it requires high level of expertise and experience. In addition to the time involved, different analyst often produces different fault-trees either by incorrect logic or omission of certain events. Automatic fault-tree construction system can be efficient in solving above problems. This study presents a new Digraph-FT conversion algorithm that leads automatic FTA system.

  • PDF

A New Quantification Method for Multi-Unit Probabilistic Safety Assessment (다수기 PSA 수행을 위한 새로운 정량화 방법)

  • Park, Seong Kyu;Jung, Woo Sik
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.97-106
    • /
    • 2020
  • The objective of this paper is to suggest a new quantification method for multi-unit probabilistic safety assessment (PSA) that removes the overestimation error caused by the existing delete-term approximation (DTA) based quantification method. So far, for the actual plant PSA model quantification, a fault tree with negates have been solved by the DTA method. It is well known that the DTA method induces overestimated core damage frequency (CDF) of nuclear power plant (NPP). If a PSA fault tree has negates and non-rare events, the overestimation in CDF drastically increases. Since multi-unit seismic PSA model has plant level negates and many non-rare events in the fault tree, it should be very carefully quantified in order to avoid CDF overestimation. Multi-unit PSA fault tree has normal gates and negates that represent each NPP status. The NPP status means core damage or non-core damage state of individual NPPs. The non-core damage state of a NPP is modeled in the fault tree by using a negate (a NOT gate). Authors reviewed and compared (1) quantification methods that generate exact or approximate Boolean solutions from a fault tree, (2) DTA method generating approximate Boolean solution by solving negates in a fault tree, and (3) probability calculation methods from the Boolean solutions generated by exact quantification methods or DTA method. Based on the review and comparison, a new intersection removal by probability (IRBP) method is suggested in this study for the multi-unit PSA. If the IRBP method is adopted, multi-unit PSA fault tree can be quantified without the overestimation error that is caused by the direct application of DTA method. That is, the extremely overestimated CDF can be avoided and accurate CDF can be calculated by using the IRBP method. The accuracy of the IRBP method was validated by simple multi-unit PSA models. The necessity of the IRBP method was demonstrated by the actual plant multi-unit seismic PSA models.

Fault Tree Construction Method using Function Deployments of Machine Parts (기능 전개를 활용한 기계류 부품의 Fault Tree 구성에 관한 연구)

  • 하성도;이언경;강달모
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.257-263
    • /
    • 2001
  • In the analysis of product reliability, the fault tree is widely used since it shows the interrelations of the faults that lead to the product fault. A top-down approach based on experts’ experience is commonly used in the fault tree construction and the trees often take different forms depending on the intent of the analyst. In this work it is studied how to construct fault trees with the utilization of function trees obtained from analyzing the functions and sub-functions of products in order to suggest a generic way of fault tree construction. The function tree of a product is obtained by analyzing basic functions comprising the product main function in a bottom-up approach so that it enables to construct an objective fault tree. The fault tree for a scroll compressor is shown as an example.

  • PDF

An approximate approach for Computing Fault-tree probabilities (Fault-tree 확률계산을 위한 근사적 방법)

  • Lee, Geun-Hui;Lee, Dong-Hyeong
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.2
    • /
    • pp.25-32
    • /
    • 1990
  • This paper presents an approximate algorithm for computing Fault-tree probabilities. The method is essentially composed of three steps. In the first step, a Fault-tree is converted into a network form. In the second step, We change the network into a parallelized diagram. In the third step, the approximate fault-tree probability is calculated from the parallelized diagram. In this paper, in order to verify the method two hypothetical Fault-tree is used by examples. The results show that the method is very useful, even though it is an approximate technique, since it needs not to search the minimal cut sets and has the simple computing rontines.

  • PDF

System Reliability Evaluation using Dynamic Fault Tree Analysis (동적 Fault Tree 분석을 이용한 시스템 신뢰도 평가)

  • Byun, Sungil;Lee, Dongik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.5
    • /
    • pp.243-248
    • /
    • 2013
  • Reliability evaluation is important task in embedded system. It can avoid potential failures and manage the vulnerable components of embedded system effectively. Dynamic fault tree analysis is one of the reliability evaluation methods. It can represent dynamic characteristics of a system such as fault & error recovery, sequence-dependent failures. In this paper, the steering system, which is embedded system in vehicles, is represented using dynamic fault tree. We evaluate the steering system using approximation algorithm based on Simpson's rule. A set of simulation results shows that proposed method overcomes the low accuracy of classic approximation method without requiring no excessive calculation time of the Markov chain method.

Development of Alarm System Using Fault Tree Analysis for Pumping Station and Reservoir of Waterworks (Fault Tree 분석에 의한 상수도 가압장과 배수지의 경보시스템 구축)

  • Ahn, Yong-Po;Song, Moo-Geun;Lee, Dong-Ik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.847-859
    • /
    • 2011
  • This paper presents an alarm system for the integrated monitoring and control station of waterworks in Daegu City. An alarm system informs the operator or other responsible individuals about the abnormality in the process so that an appropriate action can be taken. In practice, operators receive far more false and nuisance alarms than valid and useful alarms. Too many false and nuisance alarms can distract the operator from operating the plant, and thus critical alarms may be ignored. This problem can lead to the point that the operator no longer trusts the alarms or even shuts down the whole monitoring system. This paper proposes an efficient method to reduce false and nuisance alarms by prioritizing every fault using the Fault Tree Analysis (FTA) technique. The effectiveness of the proposed method is evaluated with a set of computer simulation under various faulty conditions.