• Title/Summary/Keyword: fault tolerant system

Search Result 422, Processing Time 0.023 seconds

A Study on the Fail Safety of Electronics Power Steering Using Sensor Fusion (Sensor Fusion을 이용한 전자식 조향장치의 Fail Safety 연구)

  • Kim, Byeong-Woo;Her, Jin;Cho, Hyun-Duck;Lee, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1371-1376
    • /
    • 2008
  • A Steer-by-Wire system has so many advantages comparing with conventional mechanical steering system that it is expected to take key role in future environment friendly vehicle and intelligent transportation system. The mechanical connection between the hand wheel and the front axle will become obsolete. SBW system provides many benefits in terms of functionality, and at the same time present significant challenges - fault tolerant, fail safety - too. In this paper, failure analysis of SBW system will be performed and than sensor fusion technique will be proposed for fail safety of SBW system. A sensor fusion logic of steering angle sensor by using steering angle sensor, torque sensor and rack position sensor will be developed and simulated by fault injection simulation.

Design of Fault Diagnostic and Fault Tolerant System for Induction Motors with Redundant Controller Area Network

  • Hong, Won-Pyo;Yoon, Chung-Sup;Kim, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.371-374
    • /
    • 2004
  • Induction motors are a critical component of many industrial processes and are frequently integrated in commercially available equipment. Safety, reliability, efficiency, and performance are some of the major concerns of induction motor applications. Preventive maintenance of induction motors has been a topic great interest to industry because of their wide range application of industry. Since the use of mechanical sensors, such as vibration probes, strain gauges, and accelerometers is often impractical, the motor current signature analysis (MACA) techniques have gained murk popularity as diagnostic tool. Fault tolerant control (FTC) strives to make the system stable and retain acceptable performance under the system faults. All present FTC method can be classified into two groups. The first group is based on fault detection and diagnostics (FDD). The second group is independent of FDD and includes methods such as integrity control, reliable stabilization and simultaneous stabilization. This paper presents the fundamental FDD-based FTC methods, which are capable of on-line detection and diagnose of the induction motors. Therefore, our group has developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. This paper presents its architecture. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module is checking stator current, voltage, temperatures, vibration and speed of the motor. The DSPs share information from each sensor or DSP through DPRAM with hardware implemented semaphore. And it communicates the motor status through field bus (CAN, RS485). From the designed system, we get primitive sensors data for the case of normal condition and two abnormal conditions of 3 phase induction motor control system is implemented. This paper is the first step to drive multi-motors with serial communication which can satisfy the real time operation using CAN protocol.

  • PDF

A Fault-Tolerant Scheme for Direct Torque Controlled Induction Motor Drives (직접토크제어 유도전동기의 센서 이상허용 제어)

  • 류지수;이기상
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.366-376
    • /
    • 2002
  • A sensor fault detection and isolation scheme(SFDIS) is adopted to improve the reliability of direct torque controlled induction motor drives and the experimental results are discussed. Major contributions include: experimental analysis of a few important sensor faults. design and implementation of the proposed SFDIS, and the fault tolerant control system(FTCS). Although the adopted SFDIS employs only one observer for residual generation, the system has the function of fault isolation that only multiple observer schemes can have. To verify the performance of the proposed scheme, the speed control system is designed for the 2.2kW direct torque controlled Induction motor. Hardware of the control system consists of a control board using TMS320OVC33 and a power stack using IPM. Experimental results for various type of sensor faults show the effectiveness of the SFDIS and the FTCS.

Fault Tolerant Processor Design for Aviation Embedded System and Verification through Fault Injection (항공용 임베디드 시스템을 위한 고장감내형 프로세서 설계와 오류주입을 통한 검증)

  • Lee, Dong-Woo;Ko, Wan-Jin;Na, Jong-Wha
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.233-238
    • /
    • 2010
  • In this paper, we applied the forward and backward error recovery techniques to a reduced instruction set computer (risc) processor to develop two fault-tolerant processors, namely, fetch redundant risc (FRR) processor and a redundancy execute risc (RER) processor. To evaluate the fault-tolerance capability of three target processors, we developed the base risc processor, FRR processor, and RER processor in SystemC hardware description language. We performed fault injection experiment using the three SystemC processor models and the SystemC-based simulation fault injection technique. From the experiments, for the 1-bit transient fault, the failure rate of the FRR, RER, and base risc processor were 1%, 2.8%, and 8.9%, respectively. For the 1-bit permanent fault, the failure rate of the FRR, RER, and base risc processor were 4.3%, 6.5%, and 41%, respectively. As a result, for 1-bit fault, we found that the FRR processor is more reliable among three processors.

Fault- Tolerant Tasking and Guidance of an Airborne Location Sensor Network

  • Wu, N.Eva;Guo, Yan;Huang, Kun;Ruschmann, Matthew C.;Fowler, Mark L.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.351-363
    • /
    • 2008
  • This paper is concerned with tasking and guidance of networked airborne sensors to achieve fault-tolerant sensing. The sensors are coordinated to locate hostile transmitters by intercepting and processing their signals. Faults occur when some sensor-carrying vehicles engaged in target location missions are lost. Faults effectively change the network architecture and therefore degrade the network performance. The first objective of the paper is to optimally allocate a finite number of sensors to targets to maximize the network life and availability. To that end allocation policies are solved from relevant Markov decision problems. The sensors allocated to a target must continue to adjust their trajectories until the estimate of the target location reaches a prescribed accuracy. The second objective of the paper is to establish a criterion for vehicle guidance for which fault-tolerant sensing is achieved by incorporating the knowledge of vehicle loss probability, and by allowing network reconfiguration in the event of loss of vehicles. Superior sensing performance in terms of location accuracy is demonstrated under the established criterion.

A Fault-tolerant Scheme for Clustering Routing Protocols (클러스터 기반 라우팅 프로토콜을 위한 결함허용기법)

  • Min, Hong;Kim, Bong-Jae;Jung, Jin-Man;Kim, Seuk-Hyun;Yoon, Jin-Hyuk;Cho, Yoo-Kun;Heo, Jun-Young;Yi, Sang-Ho;Hong, Ji-Man
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.668-672
    • /
    • 2010
  • In wireless sensor networks, a fault-tolerant scheme that detects the failure of sensor nodes and improves the reliability of collected information must be considered. Resource-constraint sensor nodes expose vulnerability and cannot use existing checkpointing schemes that do not consider a feature of sensor networks. In this paper, we propose a fault-tolerant scheme for clustering routing protocols that support the recovery of a head node.

The Design of Fault Tolerant PSTR Using Virtualization Techniques on the Embedded System (가상화 기술을 이용한 임베디드 시스템상의 고장감내 PSTR 설계)

  • Yoo, Jinho;Han, Kyujong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.12
    • /
    • pp.443-448
    • /
    • 2014
  • This paper is a study related to fault tolerant design based on PSTR using virtualization techniques. If the fault tolerant PSTR based on virtualization techniques is implemented the communication performance between primary and shadow will improves and monitoring function is easy to available about activities of primary and shadow. The legacy PSTR model is implemented in its hardware. The primary play a main role and shadow play a switched action when the errors occurrs in the primary. The switched action of shadow make it possible to restart the primary function newly. This paper implements fault tolerant primary-shadow model using virtualization techniques on the embedded environment.

Performance Evaluation of Fault Tolerant Switched Ethernet Architecture for Railway Signal System (철도 신호 시스템을 위한 고장 허용 스위치드 이더넷 구조의 성능 평가)

  • Hwang, Jong-Gyu;Lee, Jae-Ho;Jo, Hyun-Jeong;Kim, Man-Ho;Park, Ji-Hun;Lee, Kyung-Chang;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1241-1248
    • /
    • 2006
  • In high reliability systems for industrial network such as railway signal system, fieldbus protocols have been known to satisfy the real-time and fault tolerant requirements. But, the application of fieldbus has been limited due to the high cost of hardware and software, and the difficulty in interfacing with multi-vendor products. Therefore, as an alternative to fieldbus, the computer network technology, especially Ethernet(IEEE 802.3), is being adapted to the industrial network. In this paper, we propose a switched Ethernet based railway signal system because of its very promising prospect for industrial application due to the elimination of uncertainties in the network operation. In addition, we propose the redundancy architecture for the reliability of network components. More specifically, this paper presents an analytical performance evaluation of switched Ethernet for railway signal system, and shows experimental evaluation of redundancy architecture.

Fault Detection And Isolation Of Two DC-DC Converters Parallel Operation By ZCT Method (ZCT방식을 이용한 두 개의 컨버터 병렬 운전 시고장 검출 및 분리)

  • 박상은
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.172-176
    • /
    • 2000
  • The paper presents the fault detection and isolation of two DC-DC converters parallel operation by ZCT method. Two experimental prototype converters were designed and implemented for evaluation of fault tolerant system. The experimental results show that fault detection and isolation circuit works very well.

  • PDF

Implementation of PLC Fault Tolerance Communication System in Control & Communication Link (Control & Communication 상에서의 PLC 고장허용 통신 시스템 구현)

  • Lim, Wan-Taek;Kim, Eung-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2298-2300
    • /
    • 2002
  • In this paper, we introduced a fault tolerant control system with the aim of achieving higher degree of reliability for a PLC control system in the field network. The system reliability was evaluated by MTBF(Mean Time Between Failure). The design of the fault tolerant system through CC-Link of Mitsubisi's MELSEC network was presented. In addition, the PLC data is transmitted from the field network's PC to the host PC by TCP/IP Window socket.

  • PDF