• Title/Summary/Keyword: fault tolerant control

Search Result 298, Processing Time 0.025 seconds

A Study on the Implementation of the Fault-Injector for the Fault Tolerant Train Communication Network (내고장성 전동차 네트워크를 위한 결함 발생기 연구)

  • You, Jae-Youn;Park, Jae-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.859-866
    • /
    • 2001
  • Recently, fault injection techniques are used for evaluation of the fault coverage properties of safety-critical systems. This paper describes the TCN Fault Injector(TFI) implemented for TCN safety analysis. The implemented TFI injects network level faults to Intelligent MVB Controller that is designed for the Korean High Speed Train. With TFI, it can be verified whether the MVB controller meets TCN specification and its safety requirements.

  • PDF

Fault-tolerant control system for once-through steam generator based on reinforcement learning algorithm

  • Li, Cheng;Yu, Ren;Yu, Wenmin;Wang, Tianshu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3283-3292
    • /
    • 2022
  • Based on the Deep Q-Network(DQN) algorithm of reinforcement learning, an active fault-tolerance method with incremental action is proposed for the control system with sensor faults of the once-through steam generator(OTSG). In this paper, we first establish the OTSG model as the interaction environment for the agent of reinforcement learning. The reinforcement learning agent chooses an action according to the system state obtained by the pressure sensor, the incremental action can gradually approach the optimal strategy for the current fault, and then the agent updates the network by different rewards obtained in the interaction process. In this way, we can transform the active fault tolerant control process of the OTSG to the reinforcement learning agent's decision-making process. The comparison experiments compared with the traditional reinforcement learning algorithm(RL) with fixed strategies show that the active fault-tolerant controller designed in this paper can accurately and rapidly control under sensor faults so that the pressure of the OTSG can be stabilized near the set-point value, and the OTSG can run normally and stably.

A Realization Method of Fault-tolerant Control of Flexible Arm under Sensor Fault by Using an Adaptive Sensor Signal Observer

  • Izumikawa Yu;Yubai Kazuhiro;Hirai Junji
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.8-17
    • /
    • 2006
  • In this paper, we propose a fault-tolerant control system for the position control and vibration suppression of a flexible arm robot. The proposed control system has a strain gauge sensor signal observer based on a reaction force observer and detects a fault by monitoring an estimated error. In order to improve the estimation accuracy, the plant parameters included in the sensor signal observer are updated by using the strain gauge sensor signal in normal time through the adaptive law. After fault detection, the proposed control system exchanges the faulty sensor signal for the estimated one and switches to a fault mode controller so as to maintain the stability and the control performance. We confirmed the effectiveness of the proposed control system through several experiments.

Effects of Zero-Sequence Transformations and Min-Max Injection on Fault-Tolerant Symmetrical Six-Phase Drives with Single Isolated Neutral

  • Munim, Wan Noraishah Wan Abdul;Tousizadeh, Mahdi;Che, Hang Seng
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.968-979
    • /
    • 2019
  • Recently, there has been increased interest in the study of multiphase machines due to their higher fault-tolerant capability when compared to their conventional three-phase counterparts. For six-phase machines, stator windings configured with a single isolated neutral (1N) provide significantly more post-fault torque/power than two isolated neutrals (2N). Hence, this configuration is preferred in applications where post-fault performance is critical. It is well known that min-max injection has been commonly used for three-phase and multiphase machines in healthy condition to maximize the modulation limit. However, there is a lack of discussion on min-max injection for post-fault condition. Furthermore, the effects in terms of the common-mode voltage (CMV) in modulating signals has not been discussed. This paper investigates the effect of min-max injection in post fault-tolerant control on the voltage and speed limit of a symmetrical six-phase induction machine with single isolated neutral. It is shown that the min-max injection can minimize the amplitude of reference voltage, which maximizes the modulation index and post-fault speed of the machine. This in turn results in a higher post-fault power.

Fault Tolerant Flight Control Based on Time Delay Control (시간 지연 제어를 이용한 내고장 비행제어 기법)

  • Jin, Jae-Hyun;Yoo, Chang-Sun;Ryu, Hyeok;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.54-60
    • /
    • 2005
  • In this paper, fault tolerant control for aircraft is being discussed. The authors propose a fault tolerant control algorithm based on time delay control. Time delay control is an effective method to deal with unknown dynamics. The proposed algorithm has no parameter to be updated and needs no prior information of faults. These are the primary advantages of the proposed method. The algorithm uses output feedback. The design and the stability condition are presented by following the existing proof. The proposed algorithms are verified by simulation examples.

Fault-Tolerant Networked Control Systems Using Control Allocation for Failures in Multiple Control Surfaces (다중 제어면 고장에 대한 제어면 재분배 고장 대처 기법)

  • Yang, In-Seok;Kim, Dong-Gil;Lee, Dong-Ik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1067-1073
    • /
    • 2011
  • In this paper, the methodology of a CA (Control Allocation) based FTNCS (Fault-Tolerant Networked Control System) is proposed. Control allocation is a control surface management technique by redistributing the redundant control surfaces in overactuated systems. In modern high performance aircrafts, they adopt many redundant control surfaces to provide high performance and to satisfy various tactical requirements. Moreover, redundant control surfaces provide an opportunity to compensate performance degradation due to failures in more than one actuator by re-allocating redundant control surfaces. Simulation results with an F-18 HARV demonstrate that the proposed CA based FTNCS can achieve a fast and accurate tracking performance even in the presence of actuator faults.

A Fault Tolerant Control for Distributed Programmable Logic Controller System (분산형 PLC 시스템에서의 고장 허용 제어)

  • Jeong, S.K.;Jeong, Y.M.
    • Journal of Power System Engineering
    • /
    • v.8 no.1
    • /
    • pp.62-68
    • /
    • 2004
  • This paper describes a fault tolerant control in distributed PLC(Programmable Logic Controller) system to ensure reliability of controllers which have some faults simultaneously. First, the behavior of PLC is modeled as discrete expressions using Galois field. Then, we design the control laws for additional spare controllers to generate parity code with two dimensions. Finally, the algorithm for estimating normal output instead of abnormal output from the controllers with fault is suggested. Comparing to the traditional duplication method, the suggested method can reduce the number of spare controllers significantly to ensure control reliability. This method will be applied to an automatic system in order to increase reliability. Also, it can improve cost performance of the system.

  • PDF

Active Fault Tolerant Control of Quadrotor Based on Multiple Sliding Surface Control Method (다중 슬라이딩 표면 제어 기법에 기반한 쿼드로터의 능동 결함 허용 제어)

  • Hwang, Nam-Eung;Kim, Byung-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.59-70
    • /
    • 2022
  • In this paper, we proposed an active fault tolerant control (AFTC) method for the position control of a quadrotor with complete loss of effectiveness of one motor. We obtained the dynamics of a quadrotor using Lagrangian equation without small angle assumption. For detecting the fault on a motor, we designed a fault detection module, which consists of the fault detection and diagnosis (FDD) module and the fault detection and isolation (FDI) module. For the FDD module, we designed a nonlinear observer that observes the states of a quadrotor based on the obtained dynamics. Using the observed states of a quadrotor, we designed residual signals and set the appropriate threshold values of residual signals to detect the fault. Also, we designed an FDI module to identify the fault location using the designed additional conditions. To make a quadrotor track the desired path after detecting the fault of a motor, we designed a fault tolerant controller based on the multiple sliding surface control (MSSC) technique. Finally, through simulations, we verified the effectiveness of the proposed AFTC method for a quadrotor with complete loss of effectiveness of one motor.

Fault-tolerant ZigBee-based Automatic Meter Reading Infrastructure

  • Hwang, Kwang-Il
    • Journal of Information Processing Systems
    • /
    • v.5 no.4
    • /
    • pp.221-228
    • /
    • 2009
  • Due to low cost, low-power, and scalability, ZigBee is considered an efficient wireless AMR infrastructure. However, these characteristics of ZigBee can make the devices more vulnerable to unexpected error environments. In this paper, a fault-tolerant wireless AMR network (FWAMR) is proposed, which is designed to improve the robustness of the conventional ZigBee-based AMR systems by coping well with dynamic error environments. The experimental results demonstrate that the FWAMR is considerably fault-tolerant compared with the conventional ZigBee-based AMR network.

Fault Tolerant Architecture based on PSTR in Flight Control System (PSTR 기반의 Fault Tolerant Architecture)

  • Kim, Junyeong;Lee, Keunsoo;Kim, Doohyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.79-80
    • /
    • 2009
  • 최근 UAV(Unmanned Aerial Vehicle)의 OFP(Operation Flight Program)에 대한 많은 연구가 진행되고 있다. UAV의 OFP는 경성 소프트웨어 일종으로 Time deadline과 수많은 요인으로 인한 Fault에 대하여 소프트웨어의 높은 신뢰성이 요구가 된다. 본 논문에서는 UAV의 OFP에 대하여 STR(Primary-Shadow TMO replication)기반의 fault tolerant Architecture에 대하여 제안을 한다.