• 제목/요약/키워드: fault rate

검색결과 469건 처리시간 0.029초

A Safety Assessment Methodology for a Digital Reactor Protection System

  • Lee Dong-Young;Choi Jong-Gyun;Lyou Joon
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권1호
    • /
    • pp.105-112
    • /
    • 2006
  • The main function of a reactor protection system is to maintain the reactor core integrity and the reactor coolant system pressure boundary. Generally, the reactor protection system adopts the 2-out-of-m redundant architecture to assure a reliable operation. This paper describes the safety assessment of a digital reactor protection system using the fault tree analysis technique. The fault tree technique can be expressed in terms of combinations of the basic event failures such as the random hardware failures, common cause failures, operator errors, and the fault tolerance mechanisms implemented in the reactor protection system. In this paper, a prediction method of the hardware failure rate is suggested for a digital reactor protection system, and applied to the reactor protection system being developed in Korea to identify design weak points from a safety point of view.

3D Finite Element Analysis of Fault Displacements in the Nobi Fault Zone, Japan

  • Choi, Young-Mook;Kim, Woo-Seok;Lee, Chul-Goo;Kim, Chang-Yong;Seo, Yong-Seok
    • 지질공학
    • /
    • 제24권3호
    • /
    • pp.323-332
    • /
    • 2014
  • The Nobi fault zone, which generated the 1891 Nobi Earthquake (M8.0), includes five or six faults distributed in and around Gifu and Aichi prefectures, Japan. Because large cities are located near the fault zone (e.g., Gifu and Nagoya), and because the zone will likely be reactivated in the future, relatively thorough surveys have been conducted on the 1891 Nobi earthquake event, examining the fault geometry, house collapse rate, and the magnitude and distribution of earthquake intensity and fault displacement. In this study, we calculated the earthquake slip along faults in the Nobi fault zone by applying a 3D numerical analysis. The analysis shows that a zone with slip displacements of up to 100 mm included all areas with house collapse rates of 100%. In addition, the maximum vertical displacement was approximately ${\pm}1700mm$, which is in agreement with the ${\pm}1400mm$ or greater vertical displacements obtained in previous studies. The analysis yielded a fault zone with slip displacements of > 30 mm that is coincident with areas in which house collapse rates were 60% of more. The analysis shows that the regional slip sense was coincident with areas of uplift and subsidence caused by the Nobi earthquake.

고장파급 시나리오에 기초한 광역정전 해석기법 연구 (Analysis of Power System Wide-Area Blackout based on the Fault Cascading Scenarios)

  • 박찬엄;권병국;양원영;이승철
    • 전기학회논문지
    • /
    • 제57권2호
    • /
    • pp.155-163
    • /
    • 2008
  • This paper presents a novel framework for analysis of power system wide-area blackout based on so called fault cascading scenarios. For a given power system operating state, "triggering" faults or a "seed faults" are chosen based on the probabilities estimated from the hazard rates. The fault probabilities reflect both the load and the weather conditions. Effects of hidden failures in protection systems are also reflected in establishing the fault propagation scenarios since they are one of the major causes for the wide-area blackouts. A tree type data structure called a PS-BEST(Power System Blackout Event Scenario Tree) is proposed for construction of the fault cascading scenarios, in which nodes represent various power system operating states and the arcs are the events causing transitions between the states. Arcs can be either probabilistic or deterministic. For a given initial fault, the total probability of leading to wide-area blackout is estimated by aggregating the individual probability of each fault sequence route leading to wide-area blackout. A case study is performed on the IEEE RTS-79(24 bus) system based on the fault data presented by the North American Electrical Reliability Council(NERC). Test results demonstrate the potentials and the effectiveness of the proposed technique for the future wide-area blackout analysis.

신경회로망을 이용한 디젤기관의 데이터 이상감지 시스템에 관한 연구 (A Data Fault Detection System for Diesel Engines Using Neural Networks)

  • 천행춘;유영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권4호
    • /
    • pp.493-500
    • /
    • 2002
  • The operational data of diesel generator engine is two kinds of data. One is interactive the other is non interactive. We can find the fault information from interactive data measured for every sampling time when the changing rate, direction and status of data are investigated in comparition with those of normal status to diagnose the fault of combustion system. The various data values of combustion system for diesel engine are not proportional to load condition. The criterion to decide the level of data value is not absolute but relative to relational data. This study proposes to compose malfunction diagnosis engine using neural networks to decide that level of data value is out of normal status with the data collected from generator engine of the ship using the commercial data mining tool. This paper investigates the real ship's operational data of diesel generator engine and confirms usefulness of fault detecting through simulations for fault detecting.

고장전류를 고려한 수도권 BTB HVDC 위치선정 연구 (A study on BTB HVDC location in metropolitan area considering fault current analysis)

  • 윤민한;장길수;박정수;장병훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.274-275
    • /
    • 2011
  • Fault current problems is considered a serious issue in the power system because large fault currents not only cause many side effects to the equipments of power system but also lead to severe problems, such as blackouts. This paper deals with the structural analysis and 3-phase fault current stability of the future Seoul metropolitan power system. The simulation composition and analysis are performed with the 4th KEPCO power supply planning data using PSS/e. Through the results of the simulations, it can be observed that the future Seoul metropolitan system results in a fault current which exceeds the circuit breaker (CB) rate. This unremovable fault current can cause critical damage to power system. To resolve the problem, the algorithm for the application of Voltage Sourced Converter Back-to-Back High Voltage Direct Current (VSC BTB HVDC) is being proposed. where the most suitable location for solving fault current problem in Seoul metropolitan area is being implemented.

  • PDF

전력계통에 초전도한류기 적용시 차단용량 확보를 위한 초전도한류기 적용방안 연구 (Analysis on the Application Capacity of the Superconducting Fault Current Limiter considering Reclosing and Fault Current)

  • 김진석;임성훈;김재철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.592-593
    • /
    • 2015
  • Recently, the fault current has increased to exceed the rated breaking capacity of protective device due to the growth of the power demand on the power system where is changed into the loop-, mesh-, network grid. To limit fault current, the superconducting fault current limiter (SFCL) is announced with various methods. In many researches, the current limiting effect with the SFCL has been analyzed considering the rated breaking capacity of the CB with one fault condition. However, the power system has various short circuit and operation conditions. In order to select the capacity of the SFCL with reclosing operation and burden of the fault current on the protective device, the characteristics of the power system were investigated. Through the analysis, the evaluation method of the current rate was improved.

  • PDF

IGBT 인버터를 위한 향상된 단락회로 보호기법 (An Improved Short Circuit Protection Scheme for IGBT Inverters)

  • 서범석;현동석
    • 전력전자학회논문지
    • /
    • 제3권4호
    • /
    • pp.426-436
    • /
    • 1998
  • Identification of fault current during the operation of a power semiconductor switch and activation of suitable remedial actions are important for reliable operation of power converters. A short circuit is a basic and severe fault situation in a circuit structure such as voltage source converters. This paper presents a new active protection circuit for fast and precise clamping and safe shutdown of fault currents of the IGBTs. This circuit allows operation of the IGBTs with a higher on-state gate voltage, which can thereby reduce the conduction loss in the device without compromising the short circuit protection characteristics. The operation of the circuit is studied under various conditions, considering variation of temperature, rising rate of fault current, gate voltage value, and protection circuit parameters. An evaluation of the operation of the circuit is made using IGBTs from different to confirm the effectiveness of the protection circuit.

  • PDF

3상 전력계통의 1선 지락사고에 대한 초전도한류기의 동작특성 (Operating properties of superconducting fault current limiters with a sing1e line-to-ground fault in a three-phase system)

  • 최효상;현옥배;김혜림;황시돌;차상도
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 학술대회 논문집
    • /
    • pp.261-262
    • /
    • 2003
  • We performed unsymmetrical analysis of a single line-to-ground fault in a three-phase system. The current limiting elements were meander type YBCO stripes coated with Au shunt. When the fault occurred, short circuit currents were effectively limited within 1-2 msec after fault instant. The unsymmetrical rate of fault phase was distributed from 6.4 to 1.4 and most of the fault current flowed in the grounding line due to its direct grounding system.

  • PDF

경험기반추론 전략을 이용한 고장트레인 구축 (Fault Train Construction Based on Shallow Reasoning Strategy)

  • 배용환
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.19-26
    • /
    • 2005
  • There are three reasoning method in fault diagnosis process. The shallow reasoning is based on the experiential knowledge and deep reasoning is based on physical model. Hybrid reasoning is mixing two type reasoning. This study describes about fault train embodiment of screw type air compressor that is used widely in industrial facilities by using various experimental method and shallow reasoning. We investigate macroscopic failure cause of air compressor through naked eye observation and then microscopic failure cause by various experimental method. We composed fault train with fault knowledge based on empirical data and scientific data that is acquired through several experiments. It is possible to analysis system reliability and failure rate with these fault train.

확률론적 방법에 의한 단층의 활동도 평가 (Probabilistic Approach for Evaluation of the Fault Activity)

  • 장천중;최원학;연관희;박동희;임창복
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.33-40
    • /
    • 2006
  • Since early 1990's, several Quaternary faults have been found in the southeastern part of the Korean peninsula with reference to fault activity. Because some of these faults could be considered a capable fault, it is a very delicate matter, which need to be deal with carefully in assessing the seismic hazard. In determining whether or not a faults are capable, because of the low rate of seismicity and insufficient relationship between instrumental macro-seismicity and fault, there has been considerable debate among geologists and geophysicists in Korea. In this study, we discuss the criteria and probabilistic approaches that are used to assess whether or not a fault is seismogenic. And, we preliminarily also suggest the probability of fault activity from the spatial association between faults and earthquake epicenters, fault slip and tectonic stress, and geological evidence for multiple episodes of reactivation.

  • PDF