• Title/Summary/Keyword: fault line

Search Result 1,139, Processing Time 0.029 seconds

Phase Selection Algorithm Symmetrical Components for Transmission Line Protection (대칭분 전류를 이용한 송전선로 보호용 고장상 선택 알고리즘)

  • Lee, Seung-Jae;Lee, Myoung-Soo;Lee, Jae-Gyu;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.22-24
    • /
    • 2001
  • This paper presents a fault phase selection algorithm for transmission line protection by means of the symmetrical components. Accurate fault phase selection is necessary for collect functioning of transmission line relaying, particularly in Extra High Voltage (EHV) networks. The conventional phase selection algorithm used the phase difference between positive and negative sequence current excluding load current. But, it is difficult to abstract only fault current since we can not know the time which a fault occurs. The proposed algorithm can select the accurately fault phase using fault current contained pre-fault current.

  • PDF

New Fault Location Algorithms by Direct Analysis of Three-Phase Circuit Using Matrix Inverse Lemma for Unbalanced Distribution Power Systems

  • Park, Myeon-Song;Lee, Seung-Jae
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.79-84
    • /
    • 2003
  • Unbalanced systems, such as distribution systems, have difficulties in fault locations due to single-phase laterals and loads. This paper proposes new fault locations developed by the direct three-phase circuit analysis algorithms using matrix inverse lemma for the line-to-ground fault case and the line-to-line fault case in unbalanced systems. The fault location for balanced systems has been studied using the current distribution factor, by a conventional symmetrical transformation, but that for unbalanced systems has not been investigated due to their high complexity. The proposed algorithms overcome the limit of the conventional algorithm using the conventional symmetrical transformation, which requires the balanced system and are applicable to any power system but are particularly useful for unbalanced distribution systems. Their effectiveness has been proven through many EMTP simulations.

Analysis of Operational Characteristics of Separated Three-Phase Flux-Lock SFCL (삼상 분리형 자속구속형 전류제한기의 동작 특성 분석)

  • Doo, Seung-Gyu;Du, Ho-Ik;Park, Chung-Ryul;Kim, Min-Ju;Kim, Yong-Jin;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.289-289
    • /
    • 2008
  • We investigated the operational characteristics of the separated three-phase flux-lock type superconducting fault current limiter (SFCL). The single-phase lock type SFCL consist of two coils, which are wound in parallel through an iron core. The high-$T_c$ superconducting(HSTC) thin film connected in series with secondary coil. The separated three-phase flux-lock type SFCL consist of three single-phase flux-lock type SFCL. In a normal condition, the SFCL is not operate. When a fault occurs, the current of a HSTC thin film exceeds its critical current by fault current, the resistance of the HSTC thin film generated. Therefore fault current was limited by SFCL. The separated three-phase flux-lock type SFCL are operated in fault condition such as the the single line-to-ground fault, the double line-to-ground fault and the triple line-to-ground fault. The experimental results, the SFCL operational characteristics was dependent on fault condition.

  • PDF

Bus-voltage Sag Suppressing and Fault Current Limiting Characteristics of the SFCL Due to its Application Location in a Power Distribution System

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1305-1309
    • /
    • 2013
  • The application of the superconducting fault current limiter (SFCL) in a power distribution system is expected to contribute the voltage-sag suppression of the bus line as well as the fault-current reduction of the fault line. However, the application effects of the SFCL on the voltage sag of the bus line including the fault current are dependent on its application location in a power distribution system. In this paper, we investigated the fault current limiting and the voltage sag suppressing characteristics of the SFCL due to its application location such as the outgoing point of the feeder, the bus line, the neutral line and the 2nd side of the main transformer in a power distribution system, and analyzed the trace variations of the bus-voltage and fault-feeder current. The simulated power distribution system, which was composed of the universal power source, two transformers with the parallel connection and the impedance load banks connected with the 2nd side of the transformer through the power transmission lines, was constructed and the short-circuit tests for the constructed system were carried out. Through the analysis on the short-circuit tests for the simulated power distribution system with the SFCLs applied into its representative locations, the effects from the SFCL's application on the power distribution system were discussed from the viewpoints of both the suppression of the bus-voltage sag and the reduction of the fault current.

A Novel Fault Location Method for a Line to Line Fault Using Inverse Theorem of Matrix on Electric Power Lines (행렬의 역정리를 이용한 전력공급 선로의 상간단락 사고지점 검출 방법)

  • Lee Duck-su;Choi Myeon-song;Hyun Seung-ho
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1321-1324
    • /
    • 2004
  • Unbalanced systems, such as distribution systems, have difficulties in fault locations due to single-phase laterals and loads. In this paper, a novel fault location algorithm is suggested for a line to line faults using inverse theorem of matrix on electric power lines. The fault location for balanced systems has been studied using the current distribution factor, by a conventional symmetrical transformation, but that for unbalanced systems has not been investigated due to their high complexity The proposed algorithms overcome the limit of the conventional algorithm using the conventional symmetrical transformation, which requires the balanced system and are applicable to any electric power system but are particularly useful for unbalanced distribution systems. The simulation results oriented by the real distribution system are presented to show its effectiveness and accuracy.

  • PDF

On-line fault diagnosis of a distillation column using time-delay neural network (Time-Delay Neural Network를 이용한 증류탑의 on-line 고장 진단)

  • 이상규;박선원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1109-1114
    • /
    • 1992
  • Modern chemical processes are becoming more complicated. The sophisticated chemical processes have needed the fault diagnosis pxpert systems that can detect and diagnose the fault diagnosis expert systems that can detect and diagnose the faults of some processes and give and advice to the operator in the event of process faults. We present the Time-Delay Neural Network(TDNN) approach for on-line fautl diagnosis. The on-line fault diagnosis system finds the exact origin of the fault of which the symptom is propagated continuously with time. The proposed method has been applied to a pilot distillation column to show the merits and applicability of the TDNN.

  • PDF

A Study on Constructing the Prediction System Using Data Mining Techniques to Find Medium-Voltage Customers Causing Distribution Line Faults (특별고압 수전설비 관리에 데이터 마이닝 기법을 적용한 파급고장 발생가능고객 예측시스템 구현 연구)

  • Bae, Sung-Hwan;Kim, Ja-Hee;Lim, Han-Seung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2453-2461
    • /
    • 2009
  • Faults caused by medium-voltage customers have been increased and enlarged their portion in total distribution faults even though we have done many efforts. In the previous paper, we suggested the fault prediction model and fault prevention method for these distribution line faults. However we can't directly apply this prediction model in the field. Because we don't have an useful program to predict those customers causing distribution line faults. This paper presents the construction method of data warehouse in ERP system and the program to find customers who cause distribution line faults in medium-voltage customer's electric facility management applying data mining techniques. We expect that this data warehouse and prediction program can effectively reduce faults resulted from medium-voltage customer facility.

An Analysis Study on the Over-voltages by the Earth Fault in 22.9kV-Y Distribution Line (22.9kV 다중접지 배전선로 자락고장으로 인한 과전압 유압사고 분석연구)

  • Park, Sang-Man;Roh, Hwang-Nal;Cho, Seong-Soo;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3126-3128
    • /
    • 1999
  • In 22.9kV-Y overhead lines, if there is an earth fault, high fault current causes surge type over-voltages around this place. There are generally two types of earth faults. One is an earth fault which occurs when a voltage line falls to earth line. The other occurs when a voltage line directly falls to the earth. This study presents an analysis method on the earth fault.

  • PDF

Analysis of Transient Characteristics of SFCL using the Three-Phase Transformer and Power Switch (삼상 변압기와 전력용 스위치를 이용한 초전도 한류기의 과도특성 해석)

  • Jung, Byung-Ik;Choi, Hyo-Sang;Park, Jung-Il;Cho, Geum-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1743-1747
    • /
    • 2012
  • The research of superconducting fault current limiter (SFCL) for reduction of the fault current is actively underway in the worldwide. In this paper, we analyzed the characteristics of a SFCL using the transformer and superconducting elements combined mutually in accordance with the fault types. The structure of this SFCL was composed of the secondary and third windings of a transformer connected to the load and the superconducting element, respectively. The provided electric power flew into the load connected to the secondary winding of the transformer in normal state. On the other hand, when the fault occurred in power system, the fault current was limited by closing the line of third winding of the transformer. At this time, the effect of the fault was minimized by opening the fault line in secondary winding of a transformer in power system. The sensing of the fault state was performed by the current transformer(CT) and then turn-on and turn-off switching behavior of the secondary line in the transformer was performed by the silicon-controlled rectifier(SCR). As a result, the proposed SFCL limited the fault current within one-cycle efficiently. Also, the degradation of the superconducting element in the normal state was avoided.

A Study on the Fault Detection and Discrimination of Transmission Line using Fault-generated High Frequency Signals (고주파를 이용한 송전선로의 사고 검출 및 판별에 관한 연구)

  • Lee, Dong-Jun;Kim, Chul-Hwan;Kim, Il-Dong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.924-931
    • /
    • 1999
  • Most conventional protection relays are based on processing information in the spectrum that is close to or at power frequency. It is, however, widely known that faults on transmission lines produce frequency components of a wide range. High frequency signals caused by sudden changes in system voltage that occurs in the immediate post-fault period are generally outside the bandwidth of receptibility of most protection scheme. In this respect, a specially designed stack tuner is connected to the coupling capacitor of CVT, in order to capture the high frequency signals. Digital signal processing is then applied to the captured information to determine whether the fault is inside or outside the protected zone, and to discriminate the fault type. In this paper, modal transform is not applied to fault generated signals, because signals which are converted by modal transform are not have an information of each phase any longer. Instead, using peak voltage value of data windows is able to discriminate fault type. The paper concludes by presenting fault detection and discrimination of various faults on transmission line which are based on extensive simulation studies carried out on a typical 154kV Korean transmission line, using the EMTP software.

  • PDF