• Title/Summary/Keyword: fault interpretation

Search Result 101, Processing Time 0.036 seconds

Structural Geometry of the Seongjuri Syncline, Chungnam Basin (충남분지 성주리향사의 구조기하학적 해석)

  • Noh, Jungrae;Park, Seung-Ik;Kwon, Sanghoon
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.579-587
    • /
    • 2018
  • Chungnam Basin has been known as one of the largest Mesozoic basins in Korea, filled mainly with so-called Daedong Supergroup. The basin has evolved as the Early to Middle Jurassic intra-arc volcano-sedimentary basin developed on top of the Late Triassic to Early Jurassic post-collisional basin in this area, recording evolutionary history of the Mesozoic tectonics in the southwestern Korean Peninsula. This study carries out the geometric interpretations of the Seongjuri syncline and its surroundings in the central part of the Chungnam Basin, based on detailed structural field survey. Based on its doubly-plunging fold geometry, the Seongjuri syncline could be subdivided into the southwestern and northeastern domains. On the down-plunge profiles of the southwestern domain of the Seongjuri syncline as well as the underlying Okma fold, the Okma fault shows typical geometry of a basement-involved reverse fault that propagated up to the sedimentary cover. The profiles illustrate that the Seongjuri syncline occurs in front of the tip of the Okma fault, likely implying its origin as a part of the fault-related fold system. The result of this study will provide better insight into the structural interpretation of the Chungnam Basin, and will further provide useful information for the Mesozoic orgenic events of the southwestern Korean Peninsula.

The Estimation of Recent Crustal Movement along the Cam Lo fault from repeated GPS data (GPS 반복관측에 따른 캄로 단층의 최근 지각변동 평가)

  • Hai, Vy-Quoc;Lee, Young-Wook;Kang, Joon-Mook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.1
    • /
    • pp.19-23
    • /
    • 2000
  • The estimation of crustal movements along the Cam Lo fault (Quang Tri province, Vietnam) from repeated GPS data (1995-1998) is addressed in this paper. The study area is relatively small and locates at about latitude of N 16 40' 10" and longitude of E 106 58' 40" in the middle of Vietnam. The network consists of 6 points, is located in 3 tectonics units, baselines are from 3 km to 11 km. GPS observations were perforemed to the stations of our network during two campaigns in March 1995 and May 1998. Considering the relation of coordinate variation and its standard deviation based on the result, some remarks can be made: during interval from March, 1995 to May, 1998, there are movements in the investigated area, and the. vertical movements are stronger than horizontal ones. The above results will be favor in a geophysical interpretation of Cam Lo fault for geologists. This seems to be an encouraging result in studying activity of faults in Vietnam.n Vietnam.

  • PDF

Investigations of Faults using array CSAMT Method (단층조사를 위한 array CSAMT 적용사례)

  • Lee Sang Kyu;Hwang Se Ho;Lee Dong Young;Lee Jin-Soo;Hwang Hak Soo;Park In Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.2
    • /
    • pp.92-100
    • /
    • 1998
  • Array CSAMT surveys were conducted in two areas where it was not easy to identify the presence of faults only with geological survey because of thick overburden. The purpose of these surveys were to locate the faults and to delineate the deep resistivity structures around the faults. The steep dip lineaments having high contrast in resistivity laterally and the low resistive zones having some width in the resistivity sections were interpreted as faults and fracture zones associated with faults, respectively, The good applicability of array CSAMT to the investigation of fault was recognized owing to the agreement between the interpretation results of array CSAMT and the conclusive evidences collected by the following geological survey. The evidences includes the recent exposure of fault and the trajectory of fault evidences of the survey line. A comparison of the applicabilities of array CSAMT method and the resistivity method using dipole-dipole array was presented with the results of both methods along a same traverse line.

  • PDF

A semi-supervised interpretable machine learning framework for sensor fault detection

  • Martakis, Panagiotis;Movsessian, Artur;Reuland, Yves;Pai, Sai G.S.;Quqa, Said;Cava, David Garcia;Tcherniak, Dmitri;Chatzi, Eleni
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.251-266
    • /
    • 2022
  • Structural Health Monitoring (SHM) of critical infrastructure comprises a major pillar of maintenance management, shielding public safety and economic sustainability. Although SHM is usually associated with data-driven metrics and thresholds, expert judgement is essential, especially in cases where erroneous predictions can bear casualties or substantial economic loss. Considering that visual inspections are time consuming and potentially subjective, artificial-intelligence tools may be leveraged in order to minimize the inspection effort and provide objective outcomes. In this context, timely detection of sensor malfunctioning is crucial in preventing inaccurate assessment and false alarms. The present work introduces a sensor-fault detection and interpretation framework, based on the well-established support-vector machine scheme for anomaly detection, combined with a coalitional game-theory approach. The proposed framework is implemented in two datasets, provided along the 1st International Project Competition for Structural Health Monitoring (IPC-SHM 2020), comprising acceleration and cable-load measurements from two real cable-stayed bridges. The results demonstrate good predictive performance and highlight the potential for seamless adaption of the algorithm to intrinsically different data domains. For the first time, the term "decision trajectories", originating from the field of cognitive sciences, is introduced and applied in the context of SHM. This provides an intuitive and comprehensive illustration of the impact of individual features, along with an elaboration on feature dependencies that drive individual model predictions. Overall, the proposed framework provides an easy-to-train, application-agnostic and interpretable anomaly detector, which can be integrated into the preprocessing part of various SHM and condition-monitoring applications, offering a first screening of the sensor health prior to further analysis.

Synthetic Training Data Generation for Fault Detection Based on Deep Learning (딥러닝 기반 탄성파 단층 해석을 위한 합성 학습 자료 생성)

  • Choi, Woochang;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.3
    • /
    • pp.89-97
    • /
    • 2021
  • Fault detection in seismic data is well suited to the application of machine learning algorithms. Accordingly, various machine learning techniques are being developed. In recent studies, machine learning models, which utilize synthetic data, are the particular focus when training with deep learning. The use of synthetic training data has many advantages; Securing massive data for training becomes easy and generating exact fault labels is possible with the help of synthetic training data. To interpret real data with the model trained by synthetic data, the synthetic data used for training should be geologically realistic. In this study, we introduce a method to generate realistic synthetic seismic data. Initially, reflectivity models are generated to include realistic fault structures, and then, a one-way wave equation is applied to efficiently generate seismic stack sections. Next, a migration algorithm is used to remove diffraction artifacts and random noise is added to mimic actual field data. A convolutional neural network model based on the U-Net structure is used to verify the generated synthetic data set. From the results of the experiment, we confirm that realistic synthetic data effectively creates a deep learning model that can be applied to field data.

Interpretation of Influence Winding Short Phase of Induction Motor to Distortion Ratio of Park's Vector Pattern (유도전동기의 권선 단락 상에 따른 팍스 벡터 패턴 왜곡률의 영향 해석)

  • Yang, Chul-Oh;Kim, Jong-Sun;Kim, Jun-Young;Park, Kyu-Nam;Song, Myung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2075-2076
    • /
    • 2011
  • The stator winding faults diagnosis technique based on MCSA is as follows. Firstly, collecting the 3 phase motor currents, that signal is transformed by (d-q transform, $i_d$, $i_q$). Park's vector pattern, the circle that is down by d-q transformed currents($i_d$, $i_q$). The circle is widely used for stator winding faults detection. The current distortion ratio(DR), defined by the ratio of max-axis and min-axis of ellipse of Park's vector's pattern. In this study, distortion ratio of Park's vector pattern is suggested for Auto diagnosis of stator winding short fault and usefulness of distortion ratio is verified through simulation using LabVIEW program.

  • PDF

Characteristics of Faults and Folds by Using Subsurface Structural Data in Dogye Area, Korea (지하(地下) 석탄층(石炭層) 구조(構造)를 이용한 도계(道溪) 지역의 단층과 습곡구조의 특성)

  • Lee, Dong-Woo;Woo, Kyung-Sik;Seo, Kwang-Soo
    • Economic and Environmental Geology
    • /
    • v.27 no.3
    • /
    • pp.313-321
    • /
    • 1994
  • Structural interpretation by using subsurface attitude of coal seam and outcrop patterns of folds and faults shows that wrench and thrust tectonics took place simultaneously in the study area. From the interference patterns of fold axes, three generations of folding are suggested: $F_1$ (NE-SW), $F_2$ (N-S), and $F_3$ (E-W). Differential displacement of rock mass from north to south yields to E-W fold and Osypcheon Fault. Geometry of subsurface coal seam show different patterns comparing to those of surface outcrop because of shallow-depth crustal shortening which took place post Cretaceous.

  • PDF

Potential Curves of Fault Coal Seam in Electrical Prospecting (전기심사(電氣深査)에 의(依)한 함단층(含端層) 단층구조(斷層構造)의 전위측정(傳位測定)에 관(關)한 연구(硏究))

  • Suh, Baek-Soo
    • Journal of Industrial Technology
    • /
    • v.3
    • /
    • pp.9-15
    • /
    • 1983
  • To detect faulted coal seam, two and three dimensional model experiments were conducted. The size of three dimensional water tank is $170cm{\times}80cm{\times}95cm$ and the size of model coal seam is $20cm{\times}50cm{\times}1cm$ carbon plate. In this paper, various potential curves were made changing distance and model size from surface. Using these curves, interpretation of faulting coal explotation in complex topography can be done by comparing field data each other.

  • PDF

Development of Risk Evaluation Models for Railway Casualty Accidents (철도사상 사고위험도 평가 모델 개발에 관한 연구)

  • Park, Chan-Woo;Kim, Min-Su;Wang, Jong-Bae;Choi, Don-Bum
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1499-1504
    • /
    • 2008
  • This study shows risk-based evaluation results of casualty accidents for passengers, railway staffs and MOP(Member of public) on the national railway in South Korea. To evaluate risk of these accidents, the hazardous events and the hazardous factors were identified by the review of the accident history and engineering interpretation of the accident behavior. A probability evaluation model for each hazardous event which was based on the accident appearance scenario was developed by using the Fault Tree Analysis (FTA) technique. The probability for each hazardous event was evaluated from the historical data and structured expert judgment. In addition, the severity assessment model utilized by the Event Tree Analysis (ETA) technique was composed of the accident progress scenarios. And the severity for the hazardous events was estimated using fatalities and weighted injuries. The risk assessment model developed can be effectively utilized in defining the risk reduction measures in connection with the option analysis.

  • PDF

The Design of Rock Anchored Anchorage of Suspension Bridge (현수교의 지중정착식 앵커리지 설계)

  • An, Ik-Kyun;Kim, Kyung-Taek;Park, Ki-Ung;Jang, Hak-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.629-640
    • /
    • 2008
  • South anchorage(AN1, Myodo side) of supension bridge between Myodo and Gwangyang is designed as rock anchorage with 36m anchor length using the resistance of rock mass in Myodo. Checking the overall stability of the anchorage, we considered rock joints, bedding planes, fault zones and condition of rock structure in situ by analysis results for photo-lineaments, aerial photograph interpretation and drill-hole logs are considered. This anchorage consists of an access shaft, adit, and the upper and lower concrete bearing plate to introduce pre-stressing force into rock mass.

  • PDF