• 제목/요약/키워드: fault diagnosis system

검색결과 838건 처리시간 0.037초

변압기 고장 진단을 위한 하이브리드형 전문가 시스템 (A Hybrid Type Based Expert System for Fault Diagnosis in Transformers)

  • 전영재;윤용한;김재철;최도혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.143-145
    • /
    • 1996
  • This paper presents the hybrid type based expert system for fault diagnosis in transformers. The proposed system uses the novel fault diagnostic technique based on dissolved gas analysis(DGA) in oil-immersed transformers. The uncertainty of key gas analysis, norm threshold, and gas ratio boundaries are managed by using a fuzzy set. Also, the uncertainty of the fault diagnostic rules are handled by using fuzzy measures. Finally, kohnen's feature map performs fault classification in transformers. To verify the effectiveness of the proposed diagnosis technique, the hybrid type based expert system for fault diagnosis has been tested by using KEPCO's transformer gas records.

  • PDF

강인한 고장진단과 고장허용저어에 관한 사례연구 (A case study on robust fault diagnosis and fault tolerant control)

  • 이종효;유준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.130-130
    • /
    • 2000
  • This paper presents a robust fault diagnosis and fault tolerant control lot the actuator and sensor faults in the closed-loop systems affected by unknown inputs or disturbances. The fault diagnostic scheme is based on the residual set generation by using robust Parity space approach. Residual set is evaluated through the threshold test and then fault is isolated according to the decision logic table. Once the fault diagnosis module indicates which actuator or sensor is faulty, the fault magnitude is estimated by using the disturbance-decoupled optimal state estimation and a new additive control law is added to the nominal one to override the fault effect on the system. Simulation results show that the method has definite fault diagnosis and fault tolerant control ability against actuator and sensor faults.

  • PDF

페트리네트 모델을 이용한 냉동시스템의 고장 진단 (Fault Diagnosis of a Refrigeration System Based on Petri Net Model)

  • 정석권;윤종수
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.187-193
    • /
    • 2005
  • In this paper, we proposes a man-machine interface design for fault diagnosis system with inter-node search method in a Petri net model. First, complicated fault cases are modeled as the Petri net graph expressions. Next, to find out causes of the faults on which we focus, a Petri net model is analyzed using the backward reasoning of transition-invariance in the Petri net. In this step, the inter-node search method algorithm is applied to the Petri net model for reducing the range of sources in faults. Finally, the proposed method is applied to a fault diagnosis of a refrigeration system to confirm the validity of the proposed method.

  • PDF

Fault Detection and Classification with Optimization Techniques for a Three-Phase Single-Inverter Circuit

  • Gomathy, V.;Selvaperumal, S.
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1097-1109
    • /
    • 2016
  • Fault detection and isolation are related to system monitoring, identifying when a fault has occurred, and determining the type of fault and its location. Fault detection is utilized to determine whether a problem has occurred within a certain channel or area of operation. Fault detection and diagnosis have become increasingly important for many technical processes in the development of safe and efficient advanced systems for supervision. This paper presents an integrated technique for fault diagnosis and classification for open- and short-circuit faults in three-phase inverter circuits. Discrete wavelet transform and principal component analysis are utilized to detect the discontinuity in currents caused by a fault. The features of fault diagnosis are then extracted. A fault dictionary is used to acquire details about transistor faults and the corresponding fault identification. Fault classification is performed with a fuzzy logic system and relevance vector machine (RVM). The proposed model is incorporated with a set of optimization techniques, namely, evolutionary particle swarm optimization (EPSO) and cuckoo search optimization (CSO), to improve fault detection. The combination of optimization techniques with classification techniques is analyzed. Experimental results confirm that the combination of CSO with RVM yields better results than the combinations of CSO with fuzzy logic system, EPSO with RVM, and EPSO with fuzzy logic system.

배전 SCADA 기능을 이용한 고장타입.고장위치 진단 전문가 시스템 (An Expery System for the Diagnosis of the Fault Type and Fault Loaction In the Distribution SCADA System)

  • 고윤석;신덕호;신현용;이기서
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권11호
    • /
    • pp.1417-1423
    • /
    • 1999
  • Distribution system can experience the diverse events instantly and permanently. Also, it can experience high impedance fault or line drop under unbalanced situation, Accordingly, it is difficulty to identify the fault location because that data collected from distribution SCADA system may include uncertainty. This paper proposes an expert system, which can infer the faulted location the quickly and exactly for the diverse events in the distribution system. The expert system utilizes distribution SCADA function and collected data, especially, the monitoring mechanism for the normal open position switches is adopted newly in order to recognize the fault type exactly. Also, automated fault location diagnosis strategy is developed in order to minimize the spreading effect of fault obtained from the error of the system operator. The proposed strategy is implemented in C language. Especially, in order to prove the effectiveness of proposed expert system, the several scenario is simulated for the given model system. The real feeders are selected as model system for the simulation.

  • PDF

웨이블렛 계수의 분산과 상관도를 이용한 유도전동기의 고장 검출 및 진단 (Fault Detection and Diagnosis for Induction Motors Using Variance, Cross-correlation and Wavelets)

  • ;조상진;정의필
    • 한국소음진동공학회논문집
    • /
    • 제19권7호
    • /
    • pp.726-735
    • /
    • 2009
  • 이 논문에서는 신호 모델에 기반하여 유도전동기의 고장 검출 및 고장 진단을 위한 새로운 시스템을 제안한다. 산업현장에 적용하는 기존의 제품들은 신호가 문턱치를 넘어면 고장을 검출하는 단순한 알고리듬을 가지고 있어 고장의 유형이나 고장을 예측하는데 문제가 있다. 이 논문에서는 이러한 문제들을 해결하기 위한 시스템을 제안한다. 이 시스템은 고장 검출 과정과 고장 진단 과정으로 구성되며, 고장 검출 과정은 기계 신호음들이 웨이블렛 필터뱅크를 통과한 후 웨이블렛 계수들의 분산과 상관도를 분석하여 고장을 검출한다. 고장 진단 과정은 패턴분류기술을 적용하여 고장의 유형을 진단하게 된다. 대표적인 유도전동기 고장 유형들로서는 불평형, 미스얼라이먼트, 그리고 베어링 루스 등이 있으며, 이러한 유형들은 제안하는 시스템에서 분석되고 진단을 받게 된다. 제안하는 시스템에 적용한 결과 상관도를 이용한 방법은 78 %, 분산을 이용한 방법은 95 % 이상의 고장진단율을 보이는 우수한 결과를 나타내었다.

Fault tolerant supervisory control system and automated failure diagnosis

  • Cho, K.H.;Lim, J.T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.35-38
    • /
    • 1995
  • We proposed in this paper a systematic way for analyzing discrete event dynamic systems to classify faults and failures quantitatively and to find tolerable fault event sequences embedded in the system. An automated failure diagnosis scheme with respect to the nominal normal operating event sequences and the supervisory control problem for tolerable fault event sequences is presented. Moreover the supervisor failure diagnosis problem with respect to the tolerable fault event sequences is considered. Finally, a plasma etching system example is presented.

  • PDF

프레스공정시스템에서 유도전동기 및 윤활유 레벨 상태모니터링을 위한 진단시스템 개발 (Diagnostic system development for state monitoring of induction motor and oil level in press process system)

  • 이인수
    • 한국지능시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.706-712
    • /
    • 2009
  • 본 논문에서는 프레스공정라인에서 발생하는 고장을 감지하고 분류하기 위한 고장진단기법을 제안한다. 또한 윤활유 레벨을 자동감지 하기 위한 방법도 제안하다. 제안한 방법에서는 FFT 주파수해석과 여러 경계인수를 갖는 ART2 신경회로망을 사용하며, LabVIEW를 이용하여 고장진단 및 윤활유 레벨 자동감시를 위한 GUI(Graphical User Interface) 프로그램을 제작하여 고장진단을 수행하였다. 실험결과들로부터 제안한 유도전동기 고장진단 및 윤활유 레벨 자동감시시스템의 성능을 확인하였다.

Support vector ensemble for incipient fault diagnosis in nuclear plant components

  • Ayodeji, Abiodun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1306-1313
    • /
    • 2018
  • The randomness and incipient nature of certain faults in reactor systems warrant a robust and dynamic detection mechanism. Existing models and methods for fault diagnosis using different mathematical/statistical inferences lack incipient and novel faults detection capability. To this end, we propose a fault diagnosis method that utilizes the flexibility of data-driven Support Vector Machine (SVM) for component-level fault diagnosis. The technique integrates separately-built, separately-trained, specialized SVM modules capable of component-level fault diagnosis into a coherent intelligent system, with each SVM module monitoring sub-units of the reactor coolant system. To evaluate the model, marginal faults selected from the failure mode and effect analysis (FMEA) are simulated in the steam generator and pressure boundary of the Chinese CNP300 PWR (Qinshan I NPP) reactor coolant system, using a best-estimate thermal-hydraulic code, RELAP5/SCDAP Mod4.0. Multiclass SVM model is trained with component level parameters that represent the steady state and selected faults in the components. For optimization purposes, we considered and compared the performances of different multiclass models in MATLAB, using different coding matrices, as well as different kernel functions on the representative data derived from the simulation of Qinshan I NPP. An optimum predictive model - the Error Correcting Output Code (ECOC) with TenaryComplete coding matrix - was obtained from experiments, and utilized to diagnose the incipient faults. Some of the important diagnostic results and heuristic model evaluation methods are presented in this paper.

Fuzzy Petri-net Approach to Fault Diagnosis in Power Systems Using the Time Sequence Information of Protection System

  • Roh, Myong-Gyun;Hong, Sang-Eun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1727-1731
    • /
    • 2003
  • In this paper we proposed backward fuzzy Petri-net to diagnoses faults in power systems by using the time sequence information of protection system. As the complexity of power systems increases, especially in the case of multiple faults or incorrect operation of protective devices, fault diagnosis requires new and systematic methods to the reasoning process, which improves both its accuracy and its efficiency. The fuzzy Petri-net models of protection system are composed of the operating process of protective devices and the fault diagnosis process. Fault diagnosis model, which makes use of the nature of fuzzy Petri-net, is developed to overcome the drawbacks of methods that depend on operator knowledge. The proposed method can reduce processing time and increase accuracy when compared with the traditional methods. And also this method covers online processing of real-time data from SCADA (Supervisory Control and Data Acquisition)

  • PDF