• Title/Summary/Keyword: fault detection and isolation

Search Result 179, Processing Time 0.029 seconds

Redundancy Management Method on Compact Flight Control Computer for AAV (AAV용 소형비행제어컴퓨터의 다중화 관리 방안)

  • Young Seo Lee;Ji Yong Kim;Duk Gon Kim;Gyong Hoon Baek
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.459-465
    • /
    • 2024
  • The flight control computer applied to manned/unmanned aircraft is one of the key components directly connected to the control of the aircraft, and is generally designed with a redundant architecture so that essential functions for flight can be maintained even if a failure occurs in a single channel. The operational flight program loaded on these redundant flight control computers should be designed considering a time synchronization between channels, input data selection methods from redundant sensors, and fault detection/isolation methods for channels. In this paper, we propose a redundancy management method applied to triplex compact flight control computers for advanced air vehicle. The proposed redundancy management method includes a synchronization algorithm between triplex channels, an input data voting method from sensors, a bus control right selection method for control command output, and a fault detection/isolation method for channels.

A Survey on the Software Technology of Health Management System for Aircraft Gas Turbine Engine (항공기용 가스터빈 엔진의 건전성 관리를 위한 소프트웨어 발전 동향)

  • Park, Iksoo;Ki, Taeseok;Kim, Junghoe;Min, Seongki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.13-21
    • /
    • 2018
  • Technology trends of onboard and ground health management system software for aircraft gas turbine engines are surveyed. The software has changed from ground based software for fault detection and identification to a model based health identification technology for onboard software. This advanced algorithm is currently under development in a technically advanced country while domestic research is on the birth stage. This paper suggested that the optimal development plan of the software considering current technology state.

ADAPTIVE FDI FOR AUTOMOTIVE ENGINE AIR PATH AND ROBUSTNESS ASSESSMENT UNDER CLOSED-LOOP CONTROL

  • Sangha, M.S.;Yu, D.L.;Gomm, J.B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.637-650
    • /
    • 2007
  • A new on-line fault detection and isolation(FDI) scheme has been proposed for engines using an adaptive neural network classifier; this paper investigates the robustness of this scheme by evaluating in a wide range of operational modes. The neural classifier is made adaptive to cope with the significant parameter uncertainty, disturbances, and environmental changes. The developed scheme is capable of diagnosing faults in the on-line mode and can be directly implemented in an on-board diagnosis system(hardware). The robustness of the FDI for the closed-loop system with crankshaft speed feedback is investigated by testing it for a wide range of operational modes, including robustness against fixed and sinusoidal throttle angle inputs, change in load, change in an engine parameter, and all changes occurring simultaneously. The evaluations are performed using a mean value engine model(MVEM), which is a widely used benchmark model for engine control system and FDI system design. The simulation results confirm the robustness of the proposed method for various uncertainties and disturbances.

Structural damage detection using decentralized controller design method

  • Chen, Bilei;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.779-794
    • /
    • 2008
  • Observer-based fault detection and isolation (FDI) filter design method is a model-based method. By carefully choosing the observer gain, the residual outputs can be projected onto different independent subspaces. Each subspace corresponds to the monitored structural element so that the projected residual will be nonzero when the associated structural element is damaged and zero when there is no damage. The key point of detection filter design is how to find an appropriate observer gain. This problem can be interpreted in a geometric framework and is found to be equivalent to the problem of finding a decentralized static output feedback gain. But, it is still a challenging task to find the decentralized controller by either analytical or numerical methods because its solution set is, generally, non-convex. In this paper, the concept of detection filter and iterative LMI technique for decentralized controller design are combined to develop an algorithm to compute the observer gain. It can be used to monitor structural element state: healthy or damaged. The simulation results show that the developed method can successfully identify structural damages.

A Fault Management Design of Dual-Redundant Flight Control Computer for Unmanned Aerial Vehicle (무인기용 이중화 비행조종컴퓨터의 고장관리 설계)

  • Oh, Taegeun;Yoon, Hyung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.349-357
    • /
    • 2022
  • Since the flight control computer of unmanned aerial vehicle (UAV) is a flight critical equipment, it is necessary to ensure reliability and safety from the development step, and a redundancy-based fault management design is required in order to operate normally even a failure occurs. To reduce cost, weight and power consumption, the dual-redundant flight control system design is considered in UAV. However, there are various restrictions on the fault management design. In this paper, we propose the fault detection and isolation designs for the dual-redundant flight control computer to satisfy the safety requirements of an UAV. In addition, the flight control computer developed by applying the fault management design performed functional tests in the integrated test environment, and after performing FMET in the HILS, its reliability was verified through flight tests.

System Integration Test Design to Ensure Reliability of Complex Guided Missile System (복합 유도무기체계의 신뢰성 확보를 위한 체계 통합 시험 설계)

  • Hwang, Ho-Sung;Jo, Kyoung-Hwan;Park, In-Chul;Yun, Won-Sik
    • Journal of Applied Reliability
    • /
    • v.12 no.2
    • /
    • pp.105-119
    • /
    • 2012
  • In this paper, we have proposed a methodology which can make effective test for system integration of complex guided missile system. System integration test play a significant role in the development of weapon system, providing the means to detect and isolate faults on first linkage between sub-systems. Integration tests for domestic weapon system has executed not a technology-intensive method based on tool but labor-intensive method based on experience. Higher cost, longer period, and more resource are required to execute system integration test for complex guided missile system comparing with past weapon systems, because recently weapon systems have more complex and more networked functions. Because the proposed design method for system integration test decreases number of test case, it lead to a decrease of cost, period, and resource for integration test of weapon system. The proposed configuration for system integration test will ensure reliability through detection and isolation of fault on linkage between sub-systems.

An Improved Hybrid Kalman Filter Design for Aircraft Engine based on a Velocity-Based LPV Framework

  • Liu, Xiaofeng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.535-544
    • /
    • 2017
  • In-flight aircraft engine performance estimation is one of the key techniques for advanced intelligent engine control and in-flight fault detection, isolation and accommodation. This paper detailed the current performance degradation estimation methods, and an improved hybrid Kalman filter via velocity-based LPV (VLPV) framework for these needs is proposed in this paper. Composed of a nonlinear on-board model (NOBM) and VLPV, the filter shows a hybrid architecture. The outputs of NOBM are used for the baseline of the VLPV Kalman filter, while the system performance degradation factors on-line estimated by the measured real system output deviations are fed back to the NOBM for its updating. In addition, the setting of the process and measurement noise covariance matrices' values are also discussed. By applying it to a commercial turbofan engine, simulation results show the efficiency.

Real-time FDI Schemes for AC Motor Control Systems (교류전동기 제어시스템을 위한 실시간 고장검출진단)

  • Park Tae-Geon;Ryu Ji-Su;Lee Kee-Sang
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.77-81
    • /
    • 2002
  • In many high performance engineering systems such as automated production system and transportation systems, AC-servo drives are employed as the most Important driving parts. And the faults of servo drives result in overall system performance deterioration or an unscheduled shutdown In critical situations. The real-time fault detection and isolation(FDI) scheme Is very useful to prevent them and to guarantee the desired reliability of the overall system. In this paper, the FDI schemes which can be applied to AC servo drives are introduced and some new results are presented.

  • PDF

Performance Evaluation Involving Multiple Parameters in Built-In-Test Systems

  • Kang, Hee-Jung;Yoo, Wang-Jin
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.16 no.2
    • /
    • pp.148-158
    • /
    • 1991
  • The Built-In-Test (BIT) system is an integrated subsystem for the determination of the health status of any primary system. The BIT consists of hardware and software installations directed at performance of the functions of fault detection, diagnosis and isolation, as well as primary system record failure information. Evaluation of the difinitions appropriate to the BIT system, including system characteristics and parameters, is important to an understanding of system functions. The object of this paper is to present general definitions of the BIT diagnosis parameters and a semiquantiative evaluation method for BIT systems. Finally, two case studies for actual problem solutions are included.

  • PDF

Parity Space and Pattern Recognition Approach for Hardware Redundant System Signal Validation using Artificial Neural Networks (인공신경망을 이용하여 하드웨어 다중 센서 신호 검증을 위한 패리티 공간 및 패턴인식 방법)

  • 윤태섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.765-771
    • /
    • 1998
  • An artificial neural network(NN) technique is developed for hardware redundant sensor validation. Since the measurement space is a continuous space with many operating regions, it is difficult to train a NN to correctly detect failure in an accurate measurement system. A conventional backpropagation NN is modified to include an additional preprocessing layer that extracts classification features from scalar measurements. This feature extraction means transform the measurement space to parity space. The NN is independent of the state variable being measured, the instrument range, and the signal tolerance. This NN resembles the parity space approach to signal validation, except that analytical parity equations are unneeded and the NN pattern recognition capability is utilized for decision making.

  • PDF