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Abstract

In-flight aircraft engine performance estimation is one of the key techniques for advanced intelligent engine control and 

in-flight fault detection, isolation and accommodation. This paper detailed the current performance degradation estimation 

methods, and an improved hybrid Kalman filter via velocity-based LPV (VLPV) framework for these needs is proposed in 

this paper. Composed of a nonlinear on-board model (NOBM) and VLPV, the filter shows a hybrid architecture. The outputs 

of NOBM are used for the baseline of the VLPV Kalman filter, while the system performance degradation factors on-line 

estimated by the measured real system output deviations are fed back to the NOBM for its updating. In addition, the setting of 

the process and measurement noise covariance matrices’ values are also discussed. By applying it to a commercial turbofan 

engine, simulation results show the efficiency.
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1. Introduction

Aircraft engines can be operated with enhanced efficiency 

while ensuring safe operation if performance parameters, 

such as thrust and compressor stall margin, are known. Since 

these performance parameters are not directly measurable 

during flight, they can only be controlled indirectly through 

the utilization of measurable variables in the feedback control 

architecture. However, under extreme conditions and/or 

events, aircraft engines safety margins may be compromised.

Accurate in-flight estimation of aircraft engines 

performance parameters is, therefore, desired to advance 

the feedback control strategy and consequently enhance 

aircraft engine safety and efficiency. Some researchers have 

investigated the application of on-board engine models for 

the estimation of performance parameters [1, 2]. An on-board 

model can be a linear or nonlinear representation of the 

physical aircraft engine, and it can compute non-measurable 

parameters.

Since an on-board model represents the “nominal” engine, 

it must be adapted to the performance of the real engine as it 

deviates from the nominal baseline with time. A well-known 

approach for adapting an on-board model to an off-nominal 

engine is to estimate health parameters, such as efficiency, 

flow capacity, by using the Kalman filter [3, 4]. They deviate 

from the nominal baseline gradually with time due to normal 

usage and also abruptly due to component fault events. 

The Kalman filter is an efficient recursive filter that 

estimates the internal state of a linear dynamic system from a 

series of noisy measurements. The algorithm works in a two-

step process. In the prediction step, the Kalman filter produces 

estimates of the current state variables, along with their 

uncertainties. Once the outcome of the next measurement 

(necessarily corrupted with some amount of error, including 

random noise) is observed, these estimates are updated 

using a weighted average, with more weight being given to 

estimates with higher certainty. Because of the algorithm's 

recursive nature, it can run in real time using only the present 

input measurements and the previously calculated state 

and its uncertainty matrix; no additional past information is 

required. A challenging aspect of this estimation approach 

is that the linearization approximation problem of nonlinear 
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system within Kalman filter equations’ application. That is to 

solve the nonlinear filter problem, the system’s linearization 

model has to be updated in real time, and it increases the 

amount of calculation and complexity of the Kalman filter 

algorithm.

If a Kalman filter is able to accurately estimate all of the 

health parameters in real time, the Kalman filter can adapt 

itself to operate in the vicinity of the degraded engine. This 

approach, however, requires the following condition: the 

number of sensors must be at least equal to the number of 

health parameters[5]. In general, this requirement is not met 

for aircraft engines. Moreover, even if this requirement is 

met and thus all health parameters are estimated, there are 

various factors that can cause some problems in estimating 

health parameters with high accuracy. Examples of such 

factors are improper sensor location for health parameter 

estimation, existence of biases in sensors and actuators, and 

inherent model-plant mismatch. Therefore, the adaptation 

of the Kalman filter to the degraded engine through the 

real-time estimation of health parameters is a challenging 

problem.

Because of the necessity to account for health degradation 

of a real engine, and for the difficulty in achieving inflight, 

real-time adaptation of the Kalman filter through health 

parameter estimation, an alternative approach must be 

considered. One approach is to periodically update the 

Kalman filter based on the health condition estimated by 

some other means. Through the health baseline updates, the 

performance of the Kalman filter can be maintained in the 

presence of health degradation.

Actually, almost all real systems present the nonlinear 

behaviors, and there exist numerous design methodologies 

to control nonlinear systems. [6, 7] The analysis and design 

of nonlinear systems are much more difficult than that of 

the linear one. Nonlinear differential equations usually 

cannot obtain the closed-form analytical solution unless 

differential equations are treated specially, for example, 

Laplace transform, Fourier transform and Superposition 

principle which apply to linear systems are not suitable in 

nonlinear control problems. Therefore, the simplest method 

to deal with this problem is the linearization of the nonlinear 

dynamic characteristics. The commonly method is to 

approximate nonlinear measurement and state transition 

equations by a Taylor series expansion about an operating 

point and use standard linear estimation techniques. [8] 

In this case, the first derivative of the nonlinear function, 

evaluated at a specific operating point, is used to develop 

a first order set of linear state equations, such as piecewise 

linearization, linear parameter-varying modeling method 

and so on.

The piecewise linear modelling method covered the 

expected range of the state variables, and this method did 

not limit the large signal behavior of the modeled states. 

The only restriction is that the nonlinearities must be able 

to be approximated as piecewise linear functions. Assuming 

that the nonlinearities are broken up into several individual 

linear functions, this may result in individual system, inputs, 

and outputs and feed forward matrices. The boundaries 

of the piecewise linear functions may be a function of one 

state variable or more. The boundary functions are used to 

select the appropriate system, inputs and gain matrices for 

the system by using a data selector or a multiplexer. Thus, the 

piecewise linear model dynamically switches from one set of 

system and gain matrices to another as the estimated states 

traverse through their trajectories. And the method used 

Gauss’s least squares regression to determine the coefficients 

of the linear functions. This method gives the best estimation 

for each of the regions but suffers from discontinuities at the 

boundaries of the regions.

One decade ago, linear parameter-varying (LPV) systems 

[9] were introduced into the context of gain scheduling. It 

explicitly takes into account the relationship between real-

time parameter variations and performance. The synthesis 

of LPV systems can incorporate the operating conditions into 

the scheduling parameter of the system to build a controller 

that is directly parameter dependent, eliminating the explicit 

mapping of linear controllers. The controller synthesis of 

LPV systems has drawn much attention in the literatures. In 

terms of an LPV system, the method of obtaining a controller 

is fairly straightforward. However, the problem of how to 

end up in an LPV description of the nonlinear system is far 

from straightforward. A standard approach to this problem 

is an approximation of the nonlinear system by mapping 

Taylor linearization for different operating conditions. It 

is clear that such LPV models can deviate much from the 

nonlinear model, and the LPV design may perform badly or 

even result in an unstable closed-loop system of the original 

nonlinear system. [10] However, this procedure is motivated 

under the assumption of slowly varying parameters. Other 

approaches are to use nonlinear transformations, to obtain 

an LPV description of the nonlinear systems. [11-13] An LPV 

system is a linear differential inclusion. This means that a 

trajectory of the nonlinear system is one possible trajectory 

of the LPV system, among an infinite number of possibilities. 

Hence, there is an inherit conservatism in the LPV controller 

synthesis procedure. Since an LPV description of a nonlinear 

system is not unique, there is a potential in reducing the 

conservatism by the choice of LPV description. [14-21]

In this paper, an improved hybrid Kalman filter algorithm 

is provided, and the benefit of this method is investigated 
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in a simulation environment. The Kalman filter is a hybrid 

structure consisted of a nonlinear on-board model (NOBM) 

and velocity-based LPV (VLPV) models which include 

Kalman gain matrices. The NOBM is a physics-based 

model designed to run in real time, while the VLPV model 

is derived off-line from the NOBM at the nominal health 

baseline. These two main components are merged together 

to form the hybrid Kalman filter. The outline of this paper is 

as follows. First, an improved Kalman filter design procedure 

is described in Section 2. Section 3 shows the application 

to two-shaft turbofan engine and simulations. Finally, the 

conclusion can be obtained in the final section.

2. An improved Kalman filter design procedure

2.1 Linearized continuous Kalman filter

Suppose that the nonlinear system can be described as
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2.3   Kalman filter based on a velocity-based LPV 
framework

The requirements of higher stability and maneuvering 

performance for nonlinear systems, more significant 

dynamic characteristics due to facts such as various coupling 

effects, strong nonlinearities, extreme ranges of operating 

conditions and rapid changes of mass distribution. Therefore, 

seeking better control-oriented model and designing more 

appropriate controller of hypersonic vehicles are one of the 

major tasks in developing hypersonic vehicle technologies.

In this section, the velocity-based LPV modeling approach 

is briefly reviewed. Considering a general nonlinear system
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high speed rotor), while the fan, booster and low pressure tur-bine (LPT) are on the other 
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the original system Eq.(12), however, holds exactly. That is, the linearization system Eq.(14) 

is equivalent to the original nonlinear system Eq.(12). Moreover, the velocity-based lineariza-

tion is hold at every operating point and not just the equilibrium operating points, and the 

framework is shown in Fig. 3. 
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Kalman gains are derived based on the linear representations of the nonlinear system. 

When implemented, however, linear models and associated Kalman gains are integrated with 

the nonlinear system model. 
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where ( )K   is Kalman filter gains 

1( ) ( ) ( )T K P C R                                                 (17) 

and ( )P   are solutions of the Riccati equation 

1( ) ( )+ ( ) ( )- ( ) ( ) ( ) ( )T T    0A P P A P C R C P Q                          (18) 

The process of model design is shown as follow: 

1) Providing the aero-thermodynamic component-level model as NOBM. 

2) Defining a plurality of steady-state points in the whole flight envelop. 

3) Building the VLPV model and Kalman gain matrix at each point and combining them to 

Fig. 3. Framework of velocity-based LPV modeling
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where x , h ,  , u , and w  represent the vectors of state variables, health parameters, 

scheduling parameters, control command inputs, and environmental parameters, respectively. 

During given inputs, the nonlinear functions f  and g  will generate the vectors of state 

derivatives x  and measurement output y . The sensor outputs are corrupted by the white 

noise vector v . 

By linearizing the engine model at a given operation point, the corresponding linear 

state-space equations are obtained 
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tions between the elements of state-space matrices and the scheduling parameter, and the ele-

ments of state-space matrices will be tuned in parallel with the variation of the  , Fig. 6 

shows an example. 

 and 

measurement output y. The sensor outputs are corrupted by 

the white noise vector v.

By linearizing the engine model at a given operation 

point, the corresponding linear state-space equations are 

obtained

12 

Fig. 5 Schematic configuration of two-spool turbofan engine 

The nonlinear functions of aircraft gas turbine engine is represented in the following form 

( )
( , )


  

x f x h u,w
y g x h u,w v

, , ,

, ,




                                              (19) 

where x , h ,  , u , and w  represent the vectors of state variables, health parameters, 

scheduling parameters, control command inputs, and environmental parameters, respectively. 

During given inputs, the nonlinear functions f  and g  will generate the vectors of state 

derivatives x  and measurement output y . The sensor outputs are corrupted by the white 

noise vector v . 

By linearizing the engine model at a given operation point, the corresponding linear 

state-space equations are obtained 

1 1

1

( ) ( ) ( )
( ) ( ) ( )

 
  

 

 

x A x B u + L h+ w
y C x D u + M h+ v

  
  

                                    (20) 

where  TH Ln nx =  , 1= x x ,  TEF EB EC WF WB WCDC DC DC DC DC DCh , 

 TH Ln n EGTy , mfwu . A , B , C , D , L  and M  are the state-space ma-

trices scheduled by   with appropriate dimensions. In this paper, the improved hybrid 

Kalman filter is established based on the state-space equations at different operation points, 

and Hn  is chosen as the scheduling parameter   of the VLPV structure. There are func-

tions between the elements of state-space matrices and the scheduling parameter, and the ele-

ments of state-space matrices will be tuned in parallel with the variation of the  , Fig. 6 

shows an example. 

, (20)

where x=[nH  nL]T, 

12 

Fig. 5 Schematic configuration of two-spool turbofan engine 

The nonlinear functions of aircraft gas turbine engine is represented in the following form 

( )
( , )


  

x f x h u,w
y g x h u,w v

, , ,

, ,




                                              (19) 

where x , h ,  , u , and w  represent the vectors of state variables, health parameters, 

scheduling parameters, control command inputs, and environmental parameters, respectively. 

During given inputs, the nonlinear functions f  and g  will generate the vectors of state 

derivatives x  and measurement output y . The sensor outputs are corrupted by the white 

noise vector v . 

By linearizing the engine model at a given operation point, the corresponding linear 

state-space equations are obtained 

1 1

1

( ) ( ) ( )
( ) ( ) ( )

 
  

 

 

x A x B u + L h+ w
y C x D u + M h+ v

  
  

                                    (20) 

where  TH Ln nx =  , 1= x x ,  TEF EB EC WF WB WCDC DC DC DC DC DCh , 

 TH Ln n EGTy , mfwu . A , B , C , D , L  and M  are the state-space ma-

trices scheduled by   with appropriate dimensions. In this paper, the improved hybrid 

Kalman filter is established based on the state-space equations at different operation points, 

and Hn  is chosen as the scheduling parameter   of the VLPV structure. There are func-

tions between the elements of state-space matrices and the scheduling parameter, and the ele-

ments of state-space matrices will be tuned in parallel with the variation of the  , Fig. 6 

shows an example. 

, h=[DCEF  DCEB  DCEC  DCWF  DCWB  DCWC]T, 

12 

Fig. 5 Schematic configuration of two-spool turbofan engine 

The nonlinear functions of aircraft gas turbine engine is represented in the following form 

( )
( , )


  

x f x h u,w
y g x h u,w v

, , ,

, ,




                                              (19) 

where x , h ,  , u , and w  represent the vectors of state variables, health parameters, 

scheduling parameters, control command inputs, and environmental parameters, respectively. 

During given inputs, the nonlinear functions f  and g  will generate the vectors of state 

derivatives x  and measurement output y . The sensor outputs are corrupted by the white 

noise vector v . 

By linearizing the engine model at a given operation point, the corresponding linear 

state-space equations are obtained 

1 1

1

( ) ( ) ( )
( ) ( ) ( )

 
  

 

 

x A x B u + L h+ w
y C x D u + M h+ v

  
  

                                    (20) 

where  TH Ln nx =  , 1= x x ,  TEF EB EC WF WB WCDC DC DC DC DC DCh , 

 TH Ln n EGTy , mfwu . A , B , C , D , L  and M  are the state-space ma-

trices scheduled by   with appropriate dimensions. In this paper, the improved hybrid 

Kalman filter is established based on the state-space equations at different operation points, 

and Hn  is chosen as the scheduling parameter   of the VLPV structure. There are func-

tions between the elements of state-space matrices and the scheduling parameter, and the ele-

ments of state-space matrices will be tuned in parallel with the variation of the  , Fig. 6 

shows an example. 

, 

12 

Fig. 5 Schematic configuration of two-spool turbofan engine 

The nonlinear functions of aircraft gas turbine engine is represented in the following form 

( )
( , )


  

x f x h u,w
y g x h u,w v

, , ,

, ,




                                              (19) 

where x , h ,  , u , and w  represent the vectors of state variables, health parameters, 

scheduling parameters, control command inputs, and environmental parameters, respectively. 

During given inputs, the nonlinear functions f  and g  will generate the vectors of state 

derivatives x  and measurement output y . The sensor outputs are corrupted by the white 

noise vector v . 

By linearizing the engine model at a given operation point, the corresponding linear 

state-space equations are obtained 

1 1

1

( ) ( ) ( )
( ) ( ) ( )

 
  

 

 

x A x B u + L h+ w
y C x D u + M h+ v

  
  

                                    (20) 

where  TH Ln nx =  , 1= x x ,  TEF EB EC WF WB WCDC DC DC DC DC DCh , 

 TH Ln n EGTy , mfwu . A , B , C , D , L  and M  are the state-space ma-

trices scheduled by   with appropriate dimensions. In this paper, the improved hybrid 

Kalman filter is established based on the state-space equations at different operation points, 

and Hn  is chosen as the scheduling parameter   of the VLPV structure. There are func-

tions between the elements of state-space matrices and the scheduling parameter, and the ele-

ments of state-space matrices will be tuned in parallel with the variation of the  , Fig. 6 

shows an example. 

. A, B, C, D, L and M are 

the state-space matrices scheduled by ρ with appropriate 

dimensions. In this paper, the improved hybrid Kalman 

filter is established based on the state-space equations 

at different operation points, and nH is chosen as the 

scheduling parameter ρ of the VLPV structure. There are 

functions between the elements of state-space matrices and 

the scheduling parameter, and the elements of state-space 

matrices will be tuned in parallel with the variation of the ρ, 

Fig. 6 shows an example.

Considering that the length of the paper is limited, an 

example of Kalman filter corre-sponding to one operation 

point is shown in this paper. The operation point of the en-

gine is x=[6920  3682]T, and the corresponding matrices are:
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Firstly, the stability of the improved hybrid Kalman filter is evaluated. According to Eqs. 

(17) and (18), the performance of Kalman filter is conducted by the metrics Q  and R . 

According to the theory put forward by Zarchan Paul[25], the use of comparative theoretical 

error and the actual error of the Kalman filter can evaluate the job performance of the Kalman 

filter. That is, for normal operating state Kalman filter, if the actual system state vectors esti-

mation error in the range of theoretical error (±5%) in at least 68% of the total time, the set-

ting of parameters of Q  and R  can be identified as available. 

According to the reference above, the set of Q  and R  can be evaluated at different 

values. In these evaluations, with regard to measured noise, the actual sensor standard devia-

tions are probably at 0.1% to 1% in percent of steady-state values at ground maximum condi-
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Considering that the length of the paper is limited, an example of Kalman filter corre-

sponding to one operation point is shown in this paper. The operation point of the en-

gine is  6920 3682 Tx  , and the corresponding matrices are: 
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Considering that the length of the paper is limited, an example of Kalman filter corre-

sponding to one operation point is shown in this paper. The operation point of the en-

gine is  6920 3682 Tx  , and the corresponding matrices are: 
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.

The estimation accuracy of the improved hybrid kalman 

filter is demonstrated in Fig.7. At t=1s the fan efficiency 

decreases by 1%. The improved hybrid Kalman filter can 

recognize the variation of the fan efficiency based on the 

mismatch between the NOBM and the actual engine. The 

performance degradation factor estimation is successfully 

completely within 4s.

4. Conclusions

This paper proposes an improved hybrid Kalman filter 

and describes the model architecture, work mode and the 

key techniques of model design in details. By applying it to a 

turbofan engine, a series of simulations are made in synthetic 

mode. The results show that this model can effectively 

estimate the real engine performance in the whole flight 

envelope, different engine states and severe performance 

deterioration condition. The improved hybrid Kalman 

filter will be used for in-flight aircraft engine performance 

estimation, fault detection and isolation, and the further 

researches will be accomplished based on the Kalman filter 

of this paper.
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Notations

symbol description 

x system state variable  

y system output variable

u system input variable  

w white process noise signal

v white measurement noise signal  

Q covariance matrix of w
R covariance matrix of v
h performance degradation factor

DC degradation coefficient  

n spool speed (r/min)

EGT engine exhausted temper-ature (K)  

w mass flow (liter/h)

ρ scheduled parameter 

SM surge margin

F engine thrust 

T3* HPT inlet temperature

subscript description 
aug augmented system 

mf fuel

m measured parameter 

EF Fan efficiency

ss steady state 

EB Booster efficiency

ref reference value 

EC Compressor efficiency

NOBM Nonlinear on-board Model 

WF Fan flow capacity

0 initial value 

WB Booster flow capacity

H high pressure 

WC Compressor flow capacity

L low pressure  
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