• Title/Summary/Keyword: fault current

Search Result 2,110, Processing Time 0.03 seconds

Analysis on Fault Current Limiting Operation of Three-Phase Transformer Type SFCL Using Double Quench (이중퀜치를 이용한 삼상변압기형 한류기의 고장전류제한 동작 분석)

  • Han, Tae-Hee;Ko, Seok-Cheol;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.184-189
    • /
    • 2022
  • In this paper, the fault current limiting operations of three-phase transformer type superconducting fault current limiter (SFCL) using double quench, which consisted of E-I iron core with three legs wound by primary and secondary windings and two superconducting modules (SCMs), were analyzed according to three-phase ground fault types. To verify the effective operation of the three-phase transformer type SFCL using double quench, the test circuit for three-phase ground faults was constructed, and the fault current tests were carried out. Through analysis on the fault current test results, the different fault current limiting characteristics of three-phase transformer type SFCL using double quench from three-phase transformer type SFCL using three SCMs were discussed.

Study on Selection of HTS Wire for Fabrication of Fault Current-limiting Type HTS Cables (사고전류 제한형 초전도케이블 제작을 위한 초전도 선재 선정에 관한 연구)

  • Heo, Soung-Ouk;Kim, Tae-Min;Han, Byung-Sung;Du, Ho-Ik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.904-908
    • /
    • 2013
  • When an abnormal condition occurs due to a fault current at a consumer location where electricity is supplied through a high-capacity and high-$T_c$ superconducting(HTS) cable, the HTS cable would be damaged if there is no appropriate measure to protect it. Therefore, appropriate measures are needed to protect HTS cables. The fault-current-limiting HTS cable that was suggested in this study performs an ideal transport current function in normal operations and plays a role in limiting a fault current in abnormal operation (i.e., when a fault current is applied). It has a structure that facilitated its self-current-limiting ability through device change and reconfiguration in the existing HTS cable without extra switching equipment. To complete this structure, it is essential to investigate about the selection of the superconducting wire. Therefore, in this paper, HTS wire using two types of different stabilization layer is compared and examined the stability and current limiting properties under the existence of a fault current.

Current Limiting and Voltage Sag Compensation Characteristics of Flux-Lock Type SFCL Using a Transformer Winding (변압기 권선을 이용한 자속구속형 초전도 전류제한기의 전류제한 및 전압강하 보상 특성)

  • Ko, Seok-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.1000-1003
    • /
    • 2012
  • The superconducting fault current limiter (SFCL) can quickly limit the fault current shortly after the short circuit occurs and recover the superconducting state after the fault removes and plays a role in compensating the voltage sag of the sound feeder adjacent to the fault feeder as well as the fault current limiting operation of the fault feeder. Especially, the flux-lock type SFCL with an isolated transformer, which consists of two parallel connected coils on an iron core and the isolated transformer connected in series with one of two coils, has different voltage sag compensating and current limiting characteristics due to the winding direction and the inductance ratio of two coils. The current limiting and the voltage sag compensating characteristics of a SFCL using a transformer winding were analyzed. Through the analysis on the short-circuit tests results considering the winding direction of two coils, the SFCL designed with the additive polarity winding has shown the higher limited fault current than the SFCL designed with the subtractive polarity winding. It could be confirmed that the higher fault current limitation of the SFCL could be contributed to the higher load voltage sag compensation.

Transient Fault Current Limiting Characteristics of a Transformer Type SFCL Using an Additional Magnetically Coupled Circuit

  • Lim, Seung-Taek;Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.42-45
    • /
    • 2017
  • In this paper, a transformer type SFCL (superconducting fault current limiter) using an additional magnetically coupled circuit was suggested. Its transient fault current limiting characteristics, due to the winding direction of additional coupled circuit, were analyzed through fault current limiting tests. The suggested transformer type SFCL was composed of the primary winding, and one secondary winding wound on the same iron core together with an additional magnetically coupled circuit. That circuit consists of the other secondary winding together with the other SC (superconducting) element connected in parallel with its other secondary winding. As one of the effective design parameters to affect the transient fault current of the SFCL, the fault current limiting tests of the suggested SFCL were carried out considering the winding direction of its additional coupled circuit. It was confirmed that, through the analysis on the fault current tests of the SFCL, the quench sequence of two SC elements comprising the suggested SFCL could be adjusted by the winding direction of the additional coupled circuit.

Characteristics on the Transformer-Type SFCL According to Reclosing Operation the Voltage Increase (전압증가 시 재폐로 동작에 따른 변압기형 초전도 한류기의 특성 분석)

  • Choi, Soo-Geun;Choi, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.477-480
    • /
    • 2010
  • Fault current in power system is expected to increase by demand of power capacity. Therefore, when the fault occurred, fault current was increased in the power system. Many studies have been progressed to limit the fault current. Superconducting fault current limiter (SFCL) is one of them which has been studied in worldwide. In this paper, we will analyze characteristics of a transformer-type SFCL by reclosing operation when the voltage increases. Twice opening times in the reclosing of circuit breaker were set as the 0.5 and 15 seconds, respectively. Turn's number of primary and secondary coils set 4:2 and we increased voltages from 120V to 280V for each experiment. By the current waveform, maximum fault current in second and third cycles was lowered when the voltage was increased. In the recovery waveform, recovery time was increased as the voltage was increased. The reason was that power burden of the SFCL increased when consumption power was increased, so the time to get back to SFCL took longer. We compared the characteristics of a resistive-type and transformer-type SFCL. As a result, we found that the fault current of a transformer-type was lower than resistive-type and recovery time of the SFCL was shorter. Consequently, transformer-type SFCL was more profitable for limitation of fault current and recovery time under the same condition for reclosing operation.

Unbalanced Characteristics of the Superconducting Fault Current Limiters with a Single Line-to-ground Fault (1선 지락사고에 대한 초전도한류기의 불평형 특성)

  • Choi, Hyo-Sang;Lee, Na-Young;Lee, Sang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.851-855
    • /
    • 2005
  • We investigated the unbalanced characteristics of the superconducting fault current limiters (SFCLs) based on YBCO thin films with a single line-to-ground fault. When a single line-to-ground fault occurred, the short circuit current of a fault phase increased about 6 times of transport currents after the fault onset but was effectively limited to the designed current level within 2 ms by the resistance development of the SFCL. The fault currents of the sound phases almost did not change because of their direct grounding system. The unbalanced rates of a fault phase were distributed from 6.4 to 1.4. It was found that the unbalanced rates of currents were noticeably improved within one cycle after the fault onset. We calculated the zero phase currents for a single line-to-ground fault using the balanced component analysis. The positive sequence resistance was reduced remarkably right after the fault onset but eventually approached the balanced positive resistance component prior to the system fault. This means that the system reaches almost the three-phase balanced state in about 60 ms after the fault onset at the three-phase system.

Analysis on Current Limiting Characteristics of a Hybrid SFCL with the First Half Cycle Limiting Operation Due to Resistance of Superconducting Element (초전도소자의 저항변화에 따른 반주기내 한류형 하이브리드 초전도 전류제한기의 전류제한 특성 분석)

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul;Choi, Jong-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1817-1822
    • /
    • 2011
  • The fault current has been increasing due to expansive substation facilities for meeting the increase of demand. To limit increasing fault current in a power system, among methods the superconducting fault current limiter (SFCL) has been considered to be adopted in the power grid. However, in case of adopting SFCL in the power system, most of SFCLs need to solve problems such as recovery, cost. With efforts to solve those problems, the novel fault current limiting device which is called hybrid SFCL is developed. To apply the hybrid SFCL, it has to be needed to analyze application possibility and itself operation characteristics. In this paper, the fault current limiting and operation characteristics of hybrid SFCL with first half cycle the limiting operation in case of various resistances of superconducting element were analyzed through experiment.

An Analysis of Superconducting Fault Current Limiter Operation According to Asymmetry Fault Current (비대칭 고장전류에 따른 초전도 한류기 동작 분석)

  • Rhee, Sang-Bong;Kim, Chul-Hwan;Kim, Kyu-Ho;Kim, Jae-Chul;Hyun, Ok-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.450-454
    • /
    • 2009
  • This paper analyzes a asymmetry current with SFCL (Superconducting Fault Current Limiter) operation during transient period, when a fault occurs in power systems. The principle of asymmetry current nature is reviewed and asymmetry components reduction with SFCL operation is explained. To verify the performance of SFCL, a EMTP/ATPDraw model of SFCLs using MODELS language developed and simulated. Throughout the simulation, results presents the main factors for reducing the asymmetry component of fault current are not a quenching time, but a limiting resistance of SFCL and fault initiated angle.

AC Loss Characteristic in the Fault Current Limiting Elements of a Coil Type (코일형 한류소자의 교류손실 특성)

  • Ryu, Kyung-Woo;Ma, Yong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.370-374
    • /
    • 2005
  • AC loss of a superconducting conductor has a strong influence on the economic viability of a superconducting fault current limiter, which offers an attractive means to limit short circuit current in power systems. Therefore, the AC loss characteristics in several fault current limiting elements of a coil type have been investigated experimentally. The test result shows that AC losses measured in the fault current limiting elements depend on arrangement of a voltage lead. The AC loss of a bifilar coil is smallest among the fault current limiting elements of the coil type. The measured AC loss of the bifilar coil is much smaller than that calculated from Norris's elliptical model. However, the loss measured in a meander, which is frequently used in a resistive fault current limiter, agrees well to the theoretical one.

Three-phase Fault Calculation by IEC 60909 (IEC 60909에 의한 삼상 고장계산)

  • Son, Seok-Geum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.1
    • /
    • pp.12-18
    • /
    • 2014
  • This paper analyzes how to calculate the three phase short circuit current calculation procedures used in the IEC 60909 short circuit. It presented the new procedure of the fault current for the interrupting capacity of the circuit breaker. This procedure is applied to the future power system and calculates the fault current. Power demands are increased because of the growth of the economy for this reason, the fault current of the power system is largely increased and the fault current procedure for the proper interrupting capacity calculation of the existing or the new circuit breaker is essential. How to calculate the three phase short circuit current for ac electrical system and select the high voltage and low voltage circuit breaker based on IEC 60909 standards.