• Title/Summary/Keyword: fault contact

Search Result 142, Processing Time 0.035 seconds

Geological Structures of Jucheon Area, Contact Area between Ogcheon Belt and Gyeonggi Massif (옥천대와 경기육괴의 경계부, 주천 지역의 지질구조)

  • Kihm, You-Hong;Kee, Won-Seo;Jin, Gwang-Min
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.637-648
    • /
    • 2010
  • The Songbong Formation (so-called Bangrim Group), correated to the lower part of Choseon Supergroup, unconformably overlies the Precambrian Gyeonggi massif at northeastem tip of the Ogcheon belt The contact relationship between the Choseon Supergroup and the Yeongnam massif is also known as an unconformity at northeastem part of the Ogcheon belt. lt implies that the Gyeonggi and Yeongnam massifs were probably connected each other before the Early Paleozoic. Three deformational phases are recognized in the study area, The first phase is the north-northeastward ductile thrusting, which places Precambrian granite of the Gyeonggi massif over the Paleozoic rocks of the Ogcheon belt. The second phase is characterized by the southeastward thrusting and deformation partitioning along the Nuruhaji compartment fault. The third phase is the reactivation of the Nuruhaji Fault into dextral strike-slip fault with over a few kilometers displacement.

Improvement of Short Circuit Performance in 460[V]/400[A]/85[kA] Molded Case Circuit Breakers (460[V]/400[A]/85[kA] 배선용 차단기의 그리드 및 아크런너 변형을 통한 차단성능 향상)

  • Lee, Seung-Su;Jung, Eui-Hwan;Yoon, Jae-Hun;Kang, Seong-Hwa;Lim, Kee-Joe
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1451_1452
    • /
    • 2009
  • Owing to the increasing number of intelligent homes(or called Smart home), the corresponding cost is much higher. Low voltage circuit breakers are widely used in the intelligent homes to interrupt fault current rapidly and to assure the reliability of the power supply. The distribution of magnetic field induced by arc current in the contact system of molded case circuit breaker depends on the shape, arrangement, and kinds of material of grids. This paper is focused on understanding the interrupting capability, more specifically of the grid and the arc runner, based on the shape of the contact system in the current MCCB. The magnetic driving force was calculated by using the flux densities induced by the arc current, which are obtained by three-dimensional finite element method. There is a need to assure that the optimum design required to analyze the electromagnetic forces of the contact system generated by current and the flux density be present. This is paper present our computational analysis on contact system in MCCB.

  • PDF

Countermeasures to prevent contact between phases on overhead lines (가공송전선로 상(相)간 혼촉으로 인한 고장 예방 대책)

  • Park, Yoon-Seok;Kim, Yong-Rak;Kim, Ho-Ki;Kim, Won-Jin;Choi, Jin-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.109-110
    • /
    • 2007
  • Most transmission lines pass through mountainous terrain and deep valleys, to avoid populated areas. Accordingly, the impact of climate changes, environmental conditions and system expansion have caused an increase in transmission line system fault rates. KEPCO has developed and applied phase-spacers to reduce contact faults between phases. Contact between phases represented 9% of total line faults before the devices were installed. Phase-spacers have reduced faults by up to 3.4% since the phase-spacers were installed in 2005. Also, recently developed devices provide additional economic benefits as they cost about a third of the price as similar devices introduced in foreign countries. Phase-spacers are an effective way to prevent phase contact accidents by maintaining physical space between phases. These spacers will be implemented in areas where contacts are likely to occur. They are expected to reduce accident rates and improve power quality.

  • PDF

The movement history of the southern part of the Yangsan Fault Zone interpreted from the geometric and kinematic characteristics of the Sinheung Fault, Eonyang, Gyeongsang Basin, Korea (언양 신흥단층의 기하학적.운동학적 특성으로부터 해석된 경상분지 양산단층대 남부의 단층운동사)

  • Kang, Ji-Hoon;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.19-30
    • /
    • 2009
  • The main fault of Yangsan Fault Zone (YFZ) and Quaternary fault were found in a trench section with NW-SE direction at an entrance of the Sinheung village in the northern Eonyang, Ulsan, Korea. We interpreted the movement history of the southern part of the YFZ from the geometric and kinematic characteristics of basement rock's fault of the YFZ (Sinheung Fault) and Quaternary fault (Quaternary Sinheung Fault) investigated at the trench section. The trench outcrop consists mainly of Cretaceous sedimentary rocks of Hayang Group and volcanic rocks of Yucheon Group which lie in fault contact and Quaternary deposits which unconformably overlie these basement rocks. This study suggests that the movement history of the southern part of the YFZ can be explained at least by two different strike-slip movements, named as D1 and D2 events, and then two different dip-slip movements, named as D3 and D4 events. (1) D1 event: a sinistral strike-slip movement which caused the bedding of sedimentary rocks to be high-angled toward the main fault of the YFZ. (2) D2 event: a dextral strike-slip movement slipped along the high-angled beddings as fault surfaces. The main characteristic structural elements are predominant sub-horizontal slickenlines and sub-vertical fault foliations which show a NNE trend. The event formed the main fault rocks of the YFZ. (3) D3 event: a conjugate reverse-slip movement slipped along fault surfaces which trend (E)NE and moderately dip (S)SE or (N)NW. The slickenlines, which plunge in the dip direction of fault surfaces, overprint the previous sub-horizontal slickenlines. The fault is characterized by S-C fabrics superimposed on the D2 fault gouges, fault surfaces showing ramp and flat geometry, asymmetric and drag folds and collapse structures accompanied with it. The event dispersed the orientation of the main fault surface of the YFZ. (4) D4 event: a Quaternary reverse-slip movement showing a displacement of several centimeters with S-C fabrics on the Quternary deposits. The D4 fault surfaces are developed along the extensions of the D3 fault surfaces of basement rocks, like the other Quaternary faults within the YFZ. This indicates that these faults were formed under the same compression of (N)NW-(S)SE direction.

Investigation of Boundary between Pohang and Janggi Basins by Electrical Resistivity Survey (전기비저항(電氣比抵抗) 탐사(探査)에 의한 포항분지(浦項盆地)와 장기분지의 경계규명(境界糾明))

  • Min, Kyung Duck;Yun, Hyesu;Moon, Hi-Soo;Lee, Hyun Koo;Lee, Dae-Ha
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.215-219
    • /
    • 1990
  • Geological and electrical resistivity surveys along the survey line of about 3 km between Kyungsangbukdo Youngilgun Hodong and Gwangmyungdong using by dipole-dipole electrode array method were carried out to examine the boundary and structural relationship between Tertiary Pohang and Janggi basins. Electrical resistivity data were interpreted qualitatively and quantitatively by means of pseudosection of apparent electrical resitivity distribution and finite difference method for two dimensional geologic structure model. The nearly vertical fault zone with low electrical resistivity value of 1-5 Ohm-m and widths of about 200m at the surface and 400 m at depth exists around 1.2 km west of national road between Ocheoneup and Yangbukmyun. Mudrocks, sandstones and tuffaceous rocks are widely distributed with electrical resistivity values of 6-77 Ohm-m. Especially, tuffaceous rocks with relatively high electrical resistivity value are predominant at eastern side of fault zone. Consequently, it is known that Pohang and Janggi basins are in fault contact.

  • PDF

Inferred Differential Stress from Twinning in Calcite of Gounri Formation in the Northern Area of Worak-san, Korea (월악산북측(月岳山北側) 고운리층(古雲里層) 방해석(方解石) 쌍정(雙晶)을 이용(利用)한 추정차응력(推定差應力) 분석(分析))

  • Ihm, Myeong Hyeok;Kim, Young Eom;Chang, Tae Woo
    • Economic and Environmental Geology
    • /
    • v.24 no.2
    • /
    • pp.177-186
    • /
    • 1991
  • Ogchon Supergroup directly contacts with Choseon Supergroup in the northern area of Worak-san, where evidences indicating thrust-fault formed during $D_2$-deformation are observed. On footwall of thrust fault, calcite veins in Gounri Formation belonging to Choson Supergroup may be deformed during thrust faulting($D_2$). Calcite veins are parallel to axial plane cleavage($S_2$) of $F_2$ fold and truncate slaty cleavage($S_1$). Therefore, we can use deformation twins in calcite grains of the veins as a marker for inferred differential stress operated upon thrust faulting. The inferred differential stresses are estimated at 190 Mpa from K, sample. The stress from K, sample close to the contact between Ogchon Supergroup and Choseon Supergroup shows a higher value than $K_2$-$K_6$ samples, probably having an important influence upon thrust faulting. The differential stress reveal again high value at $K_7$ sample, which may suggest the presence of another thrust fault.

  • PDF

Countermeasures for Preventing Electric Shock in Low-Voltage Handhole (저압 지중함에서 감전사고 방지를 위한 대책연구)

  • Kim, Chong-Min;Han, Woon-Ki;Bang, Sun-Bae;Kim, Han-Sang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.4
    • /
    • pp.195-200
    • /
    • 2007
  • This paper describes the countermeasures for preventing the electric shock which can be occurred in the low-voltage handhole underwater. Low-voltage handholes were designed and made for the test in the testing field. Which were installed 4 cases. a metal handhole cover was employed in case 1; FRP(Fiber glass Reinforced Plastic) handhole cover in case 2; an insulated rubber was put on the joint of the cables in case 3; the exposed conductors(cover, frame etc) were commoned and grounded in case 4. Thus, an ground potential near the low-voltage handhole was measured and evaluated quantitatively for the 4 cases. The measured results show that the potential of case 2.3 were lower than that of case 1 because the insulated rubber and the FRP cover prevented direct contact to the fault point. The case 4 is the lowest among the 4 cases because the common and grounding helps the fault current release into the ground, which makes the ground potential rise lower. As a result, although each case has the defects, these ways can effectively lower the electric shock risk in the low-voltage handhole.

A Study on ground fault at low voltage line and apparatus in urban railway station (도시철도역사의 저압선로 및 기기에서의 지락사고 방지 방안에 관한 검토)

  • Min Kyung-Yun;Kim Jin-Ho;Han Hag-Su
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.699-704
    • /
    • 2005
  • In the station of the railway and the subway various illumination equipment and a general power equipment for a passenger convenience, the signal equipment and the communication equipment which is necessary to the train operation provided. At the all of like this equipment from the electric room which is established in each station by changing from high voltage to low voltage and it supplies from the illumination transformer, the power transformer and the signal transformer. If it supplies to the equipment from the high voltage to the low voltage, it must be established to contact protection device in between the high voltage coil and the low voltage coil. Also it must do the grounding faulting device at the low voltage lines, the earthing devices at apparatus for the protection of an electric shock and an electric fire by the electric relation law. Compared the related regulations between the facilities which require protective functions such as grounding fault or earthing in public utilities like subway stations, and the facilities which do not require line earthing or protective functions such as electricity supplied for signalling the train. Also, will describe a countermeasure for the accident from a grounding fault.

  • PDF

Wireless safety monitoring of a water pipeline construction site using LoRa communication

  • Lee, Sahyeon;Gil, Sang-Kyun;Cho, Soojin;Shin, Sung Woo;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.433-446
    • /
    • 2022
  • Despite efforts to reduce unexpected accidents at confined construction sites, choking accidents continue to occur. Because of the poorly ventilated atmosphere, particularly in long, confined underground spaces, workers are subject to dangerous working conditions despite the use of artificial ventilation. Moreover, the traditional monitoring methods of using portable gas detectors place safety inspectors in direct contact with hazardous conditions. In this study, a long-range (LoRa)-based wireless safety monitoring system that features the network organization, fault-tolerant, power management, and a graphical user interface (GUI) was developed for underground construction sites. The LoRa wireless data communication system was adopted to detect hazardous gases and oxygen deficiency within a confined underground space with adjustable communication range and low power consumption. Fault tolerance based on the mapping information of the entire wireless sensor network was particularly implemented to ensure the reliable operation of the monitoring system. Moreover, a sleep mode was implemented for the efficient power management. The GUI was also developed to control the entire safety-monitoring system and to manage the measured data. The developed safety-monitoring system was validated in an indoor testing and at two full-scale water pipeline construction sites.

Analysis of AC Electric Railway System using the PSCAD/EMTDC (PSCAD/EMTDC를 이용한 교류 전철급전시스템 해석)

  • Lee, Han-Min;Han, Moon-Seob;Chang, Sang-Hoon;Oh, Kwang-Hae;Lee, Chang-Mu;Kim, Joo-Rak
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1241-1243
    • /
    • 2002
  • This study presents a AC electric railway system analysis using PSCAD/EMTDC for circuit analysis and fault studies. This PSCAD/EMTDC model includes feeder, contact line, rails. Scott-transformer. Auto-transformer and so on. This model is based on four-port network which is an extension of two-port network theory. In order to verify the proposed model, fault studies of a test system are performed.

  • PDF