• 제목/요약/키워드: fault area

검색결과 802건 처리시간 0.028초

광학 오류 주입 공격에 강인한 몽고메리 지수승 기반 RSA 하드웨어 구현 (Hardware Implementation of Optical Fault Injection Attack-resistant Montgomery exponentiation-based RSA)

  • 이동건;최용제;최두호;김민호;김호원
    • 한국정보통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.76-89
    • /
    • 2013
  • 본 논문에서는 RSA를 몽고메리 지수승 기반의 하드웨어로 구현함에 있어 광학 오류 주입 공격을 탐지할 수 있는 기술을 제안한다. 본 기법은 몽고메리 곱셈 기반의 연산에서 메모리 입출력에 오류가 주입되었는지 확인하기 위해 무결성 검증 절차를 구현하였으며, 곱셈 연산에는 사용되는 로직에 광학 오류 주입 탐지 기법을 적용함으로써 안전한 지수승 연산을 가능하도록 하였다. 제안한 기법은 다양한 오류에 대하여 안전한 것으로 확인되었으며, 암호화 연산 수행시간에 영향을 미치지 않으며, 전체 면적 대비 3% 미만의 오버헤드로 구현 가능하다.

통계학적 비교 기법을 이용한 태양광 모듈의 고장 유무 검출에 관한 연구 (A Study on Fault Detection for Photovoltaic Power Modules using Statistical Comparison Scheme)

  • 조현철;정영진;이관호
    • 한국태양에너지학회 논문집
    • /
    • 제33권4호
    • /
    • pp.89-93
    • /
    • 2013
  • In recent years, many investigations about photovoltaic power systems have been significantly carried out in the fields of renewable power energy. Such research area generally includes developments of highly efficient solar cells, advanced power conversion systems, and smart monitoring systems. A generic objective of fault detection and diagnosis techniques is to timely recognize unexpected faulty of dynamic systems so that economic demage occurred by such faulty is decreased by means of engineering techniques. This paper presents a novel fault detection approach for photovoltaic power arrays which are electrically connected in series and parallels. In the proposed fault detection scheme, we first measure all of photovoltaic modules located in each array by using electronic sense systems and then compare each measurement in turn to detect location of fault module through statistic computation algorithm. We accomplish real-time experiments to demonstrate our proposed fault detection methodology by using a test-bed system including two 20 watt photovoltaic modules.

배전계통에서 리클로져-퓨즈 협조동작시 초전도한류기 적용에 의한 순간전압강하 분석에 관한 연구 (Analysis of Bus Voltage Sag Caused by Recloser-Fuse Coordination in a Power Distribution System with SFCL)

  • 김명후;김진석;유일경;왕순욱;문종필;임성훈;김재철
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권1호
    • /
    • pp.22-27
    • /
    • 2010
  • This paper analyzed bus voltage sag caused by recloser-fuse coordination in a power distribution system with SFCL. Generally, the recloser is installed to upstream of fuse to clear against both permanent and temporary faults appropriately, when the fault happened and to block expansion of the fault area. Furthermore, when the fault occurred, bus voltage sag is caused by increased fault currents. However, in a power distribution system with SFCL, the fault current could be decreased by the effect of the impedance value of the SFCL and place to install one as long as it could improve bus voltage sag. Therefore, to analyze the effect of the improvement of bus voltage sag caused by recloser-fuse coordination in a power distribution system with SFCL, we used PSCAD/EMTDC about a permanent fault at the place behind the fuse.

RNN 기반 디지털 센서의 Rising time과 Falling time 고장 검출 기법 (An RNN-based Fault Detection Scheme for Digital Sensor)

  • 이규형;이영두;구인수
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.29-35
    • /
    • 2019
  • 4차 산업 혁명이 진행되며 많은 회사들의 스마트 팩토리에 대한 관심이 커지고 있으며 센서의 중요성 또한 대두되고 있다. 정보를 수집하기 위한 센서에서 고장이 발생하면 공장을 최적화하여 운영할 수 없기 때문에 이에 따른 손해가 발생할 수 있다. 이를 위해 센서의 상태를 진단하여 센서의 고장을 진단하는 일이 필요하다. 본 논문에서는 디지털 센서의 고장유형 중 Rising time과 Falling time 고장을 딥러닝 알고리즘 RNN의 LSTM을 통해 신호를 분석하여 고장을 진단하는 모델을 제안한다. 제안한 방식의 실험 결과를 정확도와 ROC 곡선 그래프의 AUC(Area under the curve)를 이용하여 Rule 기반 고장진단 알고리즘과 비교하였다. 실험 결과, 제안한 시스템은 Rule 기반 고장진단 알고리즘 보다 향상되고 안정된 성능을 보였다.

Rotational Wireless Video Sensor Networks with Obstacle Avoidance Capability for Improving Disaster Area Coverage

  • Bendimerad, Nawel;Kechar, Bouabdellah
    • Journal of Information Processing Systems
    • /
    • 제11권4호
    • /
    • pp.509-527
    • /
    • 2015
  • Wireless Video Sensor Networks (WVSNs) have become a leading solution in many important applications, such as disaster recovery. By using WVSNs in disaster scenarios, the main goal is achieving a successful immediate response including search, location, and rescue operations. The achievement of such an objective in the presence of obstacles and the risk of sensor damage being caused by disasters is a challenging task. In this paper, we propose a fault tolerance model of WVSN for efficient post-disaster management in order to assist rescue and preparedness operations. To get an overview of the monitored area, we used video sensors with a rotation capability that enables them to switch to the best direction for getting better multimedia coverage of the disaster area, while minimizing the effect of occlusions. By constructing different cover sets based on the field of view redundancy, we can provide a robust fault tolerance to the network. We demonstrate by simulating the benefits of our proposal in terms of reliability and high coverage.

Vital area identification for the physical protection of NPPs in low-power and shutdown operations

  • Kwak, Myung Woong;Jung, Woo Sik
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.2888-2898
    • /
    • 2021
  • Vital area identification (VAI) is an essential procedure for the design of physical protection systems (PPSs) for nuclear power plants (NPPs). The purpose of PPS design is to protect vital areas. VAI has been improved continuously to overcome the shortcomings of previous VAI generations. In first-generation VAI, a sabotage fault tree was developed directly without reusing probabilistic safety assessment (PSA) results or information. In second-generation VAI, VAI model was constructed from all PSA event trees and fault trees. While in third-generation VAI, it was developed from the simplified PSA event trees and fault trees. While VAIs have been performed for NPPs in full-power operations, VAI for NPPs in low-power and shutdown (LPSD) operations has not been studied and performed, even though NPPs in LPSD operations are very vulnerable to sabotage due to the very crowded nature of NPP maintenance. This study is the first to research and apply VAI to LPSD operation of NPP. Here, the third-generation VAI method for full-power operation of NPP was adapted to the VAI of LPSD operation. In this study, LPSD VAI for a few plant operational states (POSs) was performed. Furthermore, the operation strategy of vital areas for both full-power and LPSD operations was discussed. The LPSD VAI method discussed in this paper can be easily applied to all POSs. The method and insights in this study can be important for future LPSD VAI that reflects various LPSD operational states. Regulatory bodies and electric utilities can take advantage of this LPSD VAI method.

녹산국가공단 조성지 일대의 토목 지질 (Geology of Nogsan National Industrial Engineering Estate)

  • 안명석;김종대
    • 화약ㆍ발파
    • /
    • 제18권3호
    • /
    • pp.99-106
    • /
    • 2000
  • The geology of Nogsan industrial estate area, Pusan, Korea consists mainly of andesitic rocks, rhyolitic rocks and hornblende granite. They are then intruded by basic and acidic dikes. All of the igneous activities in this area are in Cretaceous time, that is the lower part of Silla group in Gyoungsang basin. Andesitic volcanic rocks are distributed in two separate basines: Saengok basin and Doodong basin. Although both basines contain andesite and andesitic breccia(Kab), younger andesitic activity was more active to the western Doodong basin giving very little influence on the eastern Saengok basin. Sediments in the area are quarternaly alluvium and colluvium. Alluvium is very thick and consists mainly of silt and clay deposited as delta deposits at the mouth of Nakdong river. Colluvium in the area is short distributary channel deposits. The area is largely filled with socks and sediments to build industrial estates especially on the delta deposits at Shinhodong area and on the shoreline mud bed between Yongwondong and Shinhodong. A careful investigation to avoid the possibility of a large scale mud flow is suggested because it could be trigered by many reason such as an earthquake or a flood on the land where a heavily loaded salt-water may soaked into the muddy bed lying on the granitic basement gently dipping toward the ocean. Althouth the area is in the Yangsan fault zone no ground evidence of fault can be seen despite the RESTEC sattlite image gives excelent traces of linearments in the area.

  • PDF

스마트 그리드 배전 시스템을 위한 와이파이 통신에 기반한 디지털 FRTU간 통신 방법론 기초연구 (Communication Methodology Between Digital FRTUs Based on Wi-Fi Communication for the Smart Grid of Distribution System Area)

  • 진우경;윤지현;최민석;이재현;오간비렉;고윤석
    • 한국전자통신학회논문지
    • /
    • 제17권6호
    • /
    • pp.1113-1120
    • /
    • 2022
  • 본 논문에서는 스마트 그리드 배전 시스템이 요구하는 디지털 FRTU(: Feeder Remote Terminal Unit)를 위한 통신 방법론을 연구하였다. 디지털 FRTU는 고장처리부와 통신부로 구성하는데, 고장처리부는 고장 시 고장정보를 통신부로 전송하며, 통신부는 주변 디지털 FRTU간 양방향 통신을 통해서 고장구간을 자율적으로 판별할 수 있도록 설계하였다. 성능 검증을 위해서 다양한 고장 시나리오들에 대한 고장모의가 가능하도록 3개의 디지털 FRTU를 기반으로 3개의 선로구간을 구성하는 하나의 성능 검증 시스템을 구축하였다. 구축된 성능 검증 시스템 상에서 1선 지락고장, 선간 및 3상 단락고장을 포함하는 다양한 고장 경우들을 실험적으로 모의하였으며, 각 경우에서 정확한 추론결과를 검증으로써 개발된 방법론의 유효성을 확인할 수 있었다.

Multi-constellation Local-area Differential GNSS for Unmanned Explorations in the Polar Regions

  • Kim, Dongwoo;Kim, Minchan;Lee, Jinsil;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제8권2호
    • /
    • pp.79-85
    • /
    • 2019
  • The mission tasks of polar exploration utilizing unmanned systems such as glacier monitoring, ecosystem research, and inland exploration have been expanded. To facilitate unmanned exploration mission tasks, precise and robust navigation systems are required. However, limitations on the utilization of satellite navigation system are present due to satellite orbital characteristics at the polar region located in a high latitude. The orbital inclination of global positioning system (GPS), which was developed to be utilized in mid-latitude sites, was designed at $55^{\circ}$. This means that as the user is located in higher latitudes, the satellite visibility and vertical precision become worse. In addition, the use of satellite-based wide-area augmentation system (SBAS) is also limited in higher latitude regions than the maximum latitude of signal reception by stationary satellites, which is $70^{\circ}$. This study proposes a local-area augmentation system that additionally utilizes Global Navigation Satellite System (GLONASS) considering satellite navigation system environment in Polar Regions. The orbital inclination of GLONASS is $64.8^{\circ}$, which is suitable in order to ensure satellite visibility in high-latitude regions. In contrast, GLONASS has different system operation elements such as configuration elements of navigation message and update cycle and has a statistically different signal error level around 4 m, which is larger than that of GPS. Thus, such system characteristics must be taken into consideration to ensure data integrity and monitor GLONASS signal fault. This study took GLONASS system characteristics and performance into consideration to improve previously developed fault detection algorithm in the local-area augmentation system based on GPS. In addition, real GNSS observation data were acquired from the receivers installed at the Antarctic King Sejong Station to analyze positioning accuracy and calculate test statistics of the fault monitors. Finally, this study analyzed the satellite visibility of GPS/GLONASS-based local-area augmentation system in Polar Regions and conducted performance evaluations through simulations.

경상남도 상북면 양산단층 서부지역에 대한 습윤지수 특성 연구 (Characterization of Wetness Index in Western Area of Yangsan Fault, Sangbuk-myeon, Kyeongnam-do)

  • 김성욱;한지영;이선갑;김상현;김춘식;김인수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.904-909
    • /
    • 2004
  • The study area adjoins with Yangsan fault in Sangbuk-myeon, Samsam-ri, Kyongsang-namdo and consist of the natural steep slope. After drawing data layer which have altitude by using digital topography data, it is converted to lattice DEM of $10m{\times}10m$ size. From this, gradient map of unit lattice, slant direction map and shadow relif map are made. Using flow apportioning algorithm, upper slope contributing area and wetness index by established lattice can be calculated. Area that have high wetness index shows lineament structure of northwest-southeast direction, and this agrees with shear fracture system. The result of electricity specific resistance survey in the study area shows that area of high wetness index has low electricity specific resistance anomaly. That is, wetness index conforms with distribution of fractured zone that accompanied chemical weathering of rock. Therefore, wetness index can be used as the method of detecting fractured zones and judging the stability of the area.

  • PDF