• Title/Summary/Keyword: fault area

Search Result 802, Processing Time 0.029 seconds

Comparative Study on the Attenuation of P and S Waves in the Crust of the Southeastern Korea (한국 남동부 지각의 P파와 5파 감쇠구조 비교연구)

  • Chung, Tae-Woong
    • Journal of the Korean earth science society
    • /
    • v.22 no.2
    • /
    • pp.112-119
    • /
    • 2001
  • The Yangsan fault in the southeastern Korea has been receiving increasing attention in its seismic activity. In this fault region, by using the extended coda-normalization method for 707 seismograms of local earthquakes, were obtained 0.009f$^{-1.05}$ and 0.004f$^{-0.70}$ for fitting values of Q$_p^{-1}$ and Q$_s^{-1}$, respectively. These results indicate that Q$_p^{-1}$ and Q$_s^{-1}$ in the southeastern Korea is the lowest level in the world although the exponent values agree well with those in the other areas. The low Q-1 is not related to the movement of the Yangsan fault but to the tectonically inactive status like a shield area.

  • PDF

Strain Analysis of Longitudinal Reinforcing Steels of RC Bridge Piers Under Shaking Test (진동대 실험에 의한 RC교각의 주철근 변형률 분석)

  • Hong, Hyun-Ki;Yang, Dong-Wook;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.93-96
    • /
    • 2008
  • The near fault ground motion(NFGM) is characterized by a single long period velocity pulse of large magnitude. NFGM's have been observed in recent strong earthquakes, Turkey Izmit (1999), Japan Kobe(1995), Northridge(1994), etc. These strong earthquakes have caused considerable damage to infrastructures because the epicenter was close to the urban area, called as NFGM. Extensive research for the far fault ground motion(FFGM) have been carried out in strong seismic region, but limited research have been done for NFGM in low or moderate seismic regions because of very few records. The purpose of this study is to investigate and analyze the effect of near-fault ground motions on RC bridge piers without lap-spliced longitudinal reinforcing steels. The seismic performance of two RC bridge piers under near-fault ground motions was investigated on the shake table. In addition, Two of four identical RC bridge piers were tested under a quasi-static load, and the others were under a pseudo-dynamic load. The respectively two RC bridge pier is comparatively subjected to Pseudo-dynamic loadings and Quasi-Static loadings. This paper indicated that more gives bigger ultimate strain of longitudinal steels to be fractured at bigger PGA motion.

  • PDF

Fault-Management Scheme for Recovery Time and Resource Efficiency in OBS Networks (OBS 망에서 복구 시간과 자원의 효율성을 고려한 장애 복구 기법)

  • 이해정;정태근;소원호;김영천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9B
    • /
    • pp.793-805
    • /
    • 2003
  • In OBS (Optical Burst Switching) networks which decouple the burst from its header, the fault of a fiber link can lead to the failure of all the light-path that traverses the fiber. Because each light-path is expected to operate at a rate of a few Gbps by using WDM (Wavelength Division Multiplexing) technology, any failure may lead to large data loss. Therefore, an efficient recovery scheme must be provided. In this paper, we analyze network utilization and BCP (Burst Control Packet) loss rate according to each link failure by applying the conventional restoration schemes in OBS networks. And through these simulation results, an ASPR scheme is proposed improve the fault management scheme in terms of recovery time and throughput. Finally, We compare the performance of our proposed scheme with that of the conventional one with respect to burst loss rate, resource utilization and throughput by OPNET simulations.

Surface Geophysical Investigations of a Slope-failure Terrane at Wiri, Andong, Korea (안동시 위리의 사면파괴 지역에 대한 지표 물리탐사)

  • 김지수;한수형;정교철
    • Economic and Environmental Geology
    • /
    • v.34 no.2
    • /
    • pp.193-204
    • /
    • 2001
  • A geophysical survey was undertaken at Wiri area, Andong, to delineate subsurface structure and reveal the fault zone nearby which heaving of road and subsidence of slope occurred in 1997, especially in the heavy rainy season. Electrical resistivity methods of dipole-dipole array profiling and Schlumberger array sounding and seismic methods of refraction and reflection were performed for the mapping of clay layer, which was interpreted to be the major factor among the reasons of slope deformation. The clay layer was characterized by lower electrical resistivities (< $100{\Omega}{\cdot}m$) and lower seismic velocities (<400 m/s), respectively. The results of electrical and seismic surveys showed that subsidence of slope was probably associated with sliding of wet clay on 18SW/NNW trending fault plane, while heaving of road was probably caused by upward movement of the wet clay through subvertical NNE trending fault.

  • PDF

Shaking table tests on the seismic response of slopes to near-fault ground motion

  • Zhu, Chongqiang;Cheng, Hualin;Bao, Yangjuan;Chen, Zhiyi;Huang, Yu
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.133-143
    • /
    • 2022
  • The catastrophic earthquake-induced failure of slopes concentrically distributed at near-fault area, which indicated the special features of near-fault ground motions, i.e. horizontal pulse-like motion and large vertical component, should have great effect on these geo-disasters. We performed shaking table tests to investigate the effect of both horizontal pulse-like motion and vertical component on dynamic response of slope. Both unidirectional (i.e., horizontal or vertical motions) and bidirectional (i.e., horizontal and vertical components) motions are applied to soft rock slope model, and acceleration at different locations is reordered. The results show that the horizontal acceleration amplification factor (AAF) increases with height. Moreover, the horizontal AAF under unidirectional horizontal pulse-like excitations is larger than that subject to ordinary motion. The vertical AAF does not show an elevation amplification effect. The seismic response of slope under different bidirectional excitations is also different: (1) The horizontal AAF is roughly constant under horizontal pulse-like excitations with and without vertical waves, but (2) the horizontal AAF under ordinary bidirectional ground motions is larger than that under unidirectional ordinary motion. Above phenomena indicate that vertical component has limited effect on seismic response when the horizontal component is pulse-like ground motion, but it can greatly enhance seismic response of slope under ordinary horizontal motion. Moreover, the vertical AAF is enhanced by horizontal motion in both horizontal pulse-like and ordinary motion. Thence, we should pay enough attention to vertical ground motion, especially its horizontal component is ordinary ground motion.

Ductility demands of steel frames equipped with self-centring fuses under near-fault earthquake motions considering multiple yielding stages

  • Lu Deng;Min Zhu;Michael C.H. Yam;Ke Ke;Zhongfa Zhou;Zhonghua Liu
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.589-605
    • /
    • 2023
  • This paper investigates the ductility demands of steel frames equipped with self-centring fuses under near-fault earthquake motions considering multiple yielding stages. The study is commenced by verifying a trilinear self-centring hysteretic model accounting for multiple yielding stages of steel frames equipped with self-centring fuses. Then, the seismic response of single-degree-of-freedom (SDOF) systems following the validated trilinear self-centring hysteretic law is examined by a parametric study using a near-fault earthquake ground motion database composed of 200 earthquake records as input excitations. Based on a statistical investigation of more than fifty-two (52) million inelastic spectral analyses, the effect of the post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio on the mean ductility demand of the system is examined in detail. The analysis results indicate that the increase of post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio reduces the ductility demands of the self-centring oscillators responding in multiple yielding stages. A set of empirical expressions for quantifying the ductility demands of trilinear self-centring hysteretic oscillators are developed using nonlinear regression analysis of the analysis result database. The proposed regression model may offer a practical tool for designers to estimate the ductility demand of a low-to-medium rise self-centring steel frame equipped with self-centring fuses progressing in the ultimate stage under near-fault earthquake motions in design and evaluation.

Studies on Geology and Mineral Resources of the Okchŏn Belts -Geological Structure of the Areas between Pyŏngchang, Yŏngwŏl and Jechŏn- (옥천대(沃川帶)의 지질(地質) 및 광물자원(鑛物資源)에 관(關)한 연구(硏究) -평창(平昌)~영월(寧越)~제천지역(堤川地域)의 지질구조(地質構造)-)

  • Kim, Ok Joon;Park, Pong Soon;Min, Kyung Duck
    • Economic and Environmental Geology
    • /
    • v.18 no.4
    • /
    • pp.369-379
    • /
    • 1985
  • The geological structures and some of the stratigraphy in the area studied are being thought to be ambiguous and controvertible. The present study intended to clarify these ambiguities by correct interpretation of the geological structures and lithostratigraphy of the area concerned. The so-called "Sambangsan formation", which was designated as an unknown age by the Taebaksan Geological Investigation Corps (1962) and as the mid Cambrian age by T. Kobayashi (1966) and I.S. Kim (1983), has been determined by the present study as the $Hongj{\breve{o}}m$ series of Carbo-Permian age resting unconformably on the Cambro-Ordovician limestone formations. This determination was supported by conodont study concurrently carried out by I.S.Kim. The so-called "Daehari formation", which was renamed by the later study group after the original "Sambangsan formation" distributed in the area from southwest of Sambangsan toward southwest to $Juch{\breve{o}}n$, possesses more or less the same lithlogy as "Sambangsan formation" of the old designation in the eastern of the area, but different lithology in the western localities where Sadong formation, the basal sandstone member of the Kobangsan formation and the green shale member of the Nokam formation are cropped out. The narrow belt of the complex mixture of the $Py{\breve{o}}ngan$ group in-between limestone formations extending over 16km with a width of 500m to 1000m was formed by the faults: the northern boundary with the limestone formations is a fault contact all the way through entire area and the southern boundary is either fault contact in most of the area and unconformity in some other area. The $Hongj{\breve{o}}m$ formation on the Mt. Sambangsan shows rather steeply dipping nearly isoclinal folds which plunges $10^{\circ}$ to $20^{\circ}$ southward. There are also field evidences that the limestone formations distributed in both north and south of the Hongjom formation (erstwhile "Sambangsan formation") along the Sambangsan ridge are the same formations and show the same folding as the $Hongj{\breve{o}}m$ formation. Therefore, these limestone formations should be rezoned in the light of the new structural interpretation although they were differently designated in the previous studies as $Py{\breve{o}}ngchang$ and $Y{\breve{o}}ngw{\breve{o}}l$-type of the Joson Group. The structures developed in the area mostly faults, which acted as one of the guides for the new interpretation of the geology and structure of the area are described and shown on the geologic map.

  • PDF

Gravity Field Interpretation for the Deep Geological Structure Analysis in Pohang-Ulsan, Southeastern Korean Peninsula (한반도 남동부 포항-울산지역 심부 지질구조 분석을 위한 중력장 해석)

  • Sohn, Yujin;Choi, Sungchan;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.597-608
    • /
    • 2020
  • Even after the Gyeongju earthquake and the Pohang earthquake, hundreds of aftershocks and micro-earthquakes are still occurring in the southeastern part of the Korean Peninsula. These phenomena mean that the stress is constantly working, implying that another huge earthquake may occur in the future. Therefore, the gravity field interpretation method was used to analyze the deep geological structure of the Pohang-Ulsan region in the southeastern Korean Peninsula. First, a gravity survey was performed to collect the insufficient data and to calculate the detailed Bouguer gravity anomaly in the study area. Based on the gravity anomaly data, the location, direction, and maximum depth of deep fault lines were analyzed using the inversion methods "Curvature analysis" and "Euler deconvolution method". As a result, it is interpreted that at least six fault lines(C1~C6) exist in deep depth. The deep fault line C1 is well correlated to the Yeonil Tectonic Line(YTL), suggesting that YTL is extended up to about 4000m deep. The deep fault line C2 consists of several segment faults and well correlated to the fault lines on the surface. Inferred fault lines C3, C4, and C5 have an NW-SE direction, which is parallel to the Ulsan fault. The deep fault line C6 has the direction of NE-SW, and it is interpreted that the eastern boundary fault of Eoil Basin is extended to the deep. Comparing the inferred fault lines with the distribution of micro-earthquakes, the location of the deep fault line C1 is well correlated to the hypocenter of micro-earthquakes. This implies that faults in deep depth are related to the recent earthquakes in the southeastern Korean Peninsula.

Pseudotachylyte Developed in Granitic Gneiss around the Bulil Waterfall in the Jirisan, SE Korea: Its Occurrence and Characteristics (지리산 불일폭포 일원의 화강암질편마암에 발달한 슈도타킬라이트: 산상과 특성)

  • Kang, Hee-Cheol;Kim, Chang-Min;Han, Raehee;Ryoo, Chung-Ryul;Son, Moon;Lee, Sang-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.157-169
    • /
    • 2019
  • Pseudotachylytes, produced by frictional heating during seismic slip, provide information that is critical to understanding the physics of earthquakes. We report the results of occurrence, structural characteristics, scanning electron microscopic observation and geochemical analysis of pseudotachylytes, which is presumed to have formed after the Late Cretaceous in outcrops of the Paleoproterozoic granitic gneiss on the Bulil waterfall of the Jirisan area, Yeongnam massif, Korea. Fault rocks, which are the products of brittle deformation under the same shear stress regime in the study area, are classified as pseudotachylyte and foliated cataclasite. The occurrences of pseudotachylyte identified on the basis of thickness and morphology are fault vein-type and injection vein-type pseudotachylyte. A number of fault vein-type pseudotachylytes occur as thin (as thick as 2 cm) layers generated on the fault plane, and are cutting general foliation and sheared foliation developed in granitic gneiss. Smaller injection vein-type pseudotachylytes are found along the fault vein-type pseudotachylytes, and appear in a variety of shapes based on field occurrence and vein geometry. At a first glance fault vein-type seudotachylyte looks like a mafic vein, but it has a chemical composition almost identical to the wall rock of granitic gneiss. Also, it has many subrounded clasts which consist predominantly of quartz, feldspar, biotite and secondary minerals including clay minerals, calcite and glassy materials. Embayed clasts, phenocryst with reaction rim, oxide droplets, amygdules, and flow structures are also observed. All of these evidences indicate the pseudotachylyte formed due to frictional melting of the wall rock minerals during fault slip related to strong seismic faulting events in the shallow depth of low temperature-low pressure. Further studies will be conducted to determine the age and mechanical aspect of the pseudotachylyte formation.

Sensitivity Enhancement of RF Plasma Etch Endpoint Detection With K-means Cluster Analysis

  • Lee, Honyoung;Jang, Haegyu;Lee, Hak-Seung;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.142.2-142.2
    • /
    • 2015
  • Plasma etch endpoint detection (EPD) of SiO2 and PR layer is demonstrated by plasma impedance monitoring in this work. Plasma etching process is the core process for making fine pattern devices in semiconductor fabrication, and the etching endpoint detection is one of the essential FDC (Fault Detection and Classification) for yield management and mass production. In general, Optical emission spectrocopy (OES) has been used to detect endpoint because OES can be a simple, non-invasive and real-time plasma monitoring tool. In OES, the trend of a few sensitive wavelengths is traced. However, in case of small-open area etch endpoint detection (ex. contact etch), it is at the boundary of the detection limit because of weak signal intensities of reaction reactants and products. Furthemore, the various materials covering the wafer such as photoresist (PR), dielectric materials, and metals make the analysis of OES signals complicated. In this study, full spectra of optical emission signals were collected and the data were analyzed by a data-mining approach, modified K-means cluster analysis. The K-means cluster analysis is modified suitably to analyze a thousand of wavelength variables from OES. This technique can improve the sensitivity of EPD for small area oxide layer etching processes: about 1.0 % oxide area. This technique is expected to be applied to various plasma monitoring applications including fault detections as well as EPD.

  • PDF