• Title/Summary/Keyword: fault area

Search Result 802, Processing Time 0.031 seconds

Geological Structures of Jucheon Area, Contact Area between Ogcheon Belt and Gyeonggi Massif (옥천대와 경기육괴의 경계부, 주천 지역의 지질구조)

  • Kihm, You-Hong;Kee, Won-Seo;Jin, Gwang-Min
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.637-648
    • /
    • 2010
  • The Songbong Formation (so-called Bangrim Group), correated to the lower part of Choseon Supergroup, unconformably overlies the Precambrian Gyeonggi massif at northeastem tip of the Ogcheon belt The contact relationship between the Choseon Supergroup and the Yeongnam massif is also known as an unconformity at northeastem part of the Ogcheon belt. lt implies that the Gyeonggi and Yeongnam massifs were probably connected each other before the Early Paleozoic. Three deformational phases are recognized in the study area, The first phase is the north-northeastward ductile thrusting, which places Precambrian granite of the Gyeonggi massif over the Paleozoic rocks of the Ogcheon belt. The second phase is characterized by the southeastward thrusting and deformation partitioning along the Nuruhaji compartment fault. The third phase is the reactivation of the Nuruhaji Fault into dextral strike-slip fault with over a few kilometers displacement.

Combining approach in Fault Detection and Isolation for GPS applications

  • Chey, Jay-Won;Jee, Gyu-In;Lee, Jang-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1949-1952
    • /
    • 2004
  • GPS is widely used for outdoor positioning in many applications. But it is not suitable for positioning in an obstacle environment such as urban area, tunnels and so on, due to variable signal level. So new technology of the positioning is required to provide the consistent error level regardless of any changes in any environment. Abrupt changes of GPS signal can be detected by various fault detection and isolation methods. Conventional FDI (Fault Detection and Isolation) methods are categorized into two approaches. One approach is the snapshot method that uses measurements only at present step. The other approach is the filtering method that uses measurements stacked from previous step to present step. The FDI result of the snapshot method can be considered reliable independently with previous results and the FDI result of the filtering method is more reliable and detection time is a little longer. Therefore combining approach of two methods is proposed for increasing FDI performance in this paper. Three approaches that are the snapshot method, the filtering method and the combining method are compared to show the probability of correct FDI in simulations. The combining approach presents best result of FDI among them and shows the consistent accuracy irrespective of any changes in outdoor environment.

  • PDF

Quench Characteristics of Resistive Superconducting Fault Current Limiters (저항형 초전도 한류소자의 퀜치 특성)

  • Kim, Hye-Rim;Hyun, Ok-Bae;Choi, Hyo-Sang;Hwang, Si-Dole;Kim, Sang-Joon
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.214-217
    • /
    • 1999
  • We investigated the quench characteristics of meander line type resistive superconducting fault current limiters based on YBCO thin films grown on 2" diameter LaAlO$_3$ substrates. A gold layer was deposited onto the 0.4 ${\mu}$ m thick YBCO film to disperse the heat generated at hot spots, prior to patterning into 1 mm wide meander lines by photolithography. The limiters were tested with simulated fault currents of various amplitudes. The quench started at 10 A and was completed within 1 msec at the fault current of 65 A$_{peak}$. The dynamic quench characteristics were explained based on the heat conduction within the film and the heat transfer between the film and the surrounding liquid nitrogen. The heat transfer coefficient per unit area was estimated to be 3.0 W/cm$^2$K.

  • PDF

An Analysis of Blasting Accidents by Fault Tree Analysis (Fault Tree Analysis 기법을 이용한 발파사고 분석)

  • Seo, Seung-Rok;Lee, Jeong-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.61-76
    • /
    • 2001
  • This study is for analyzing the explosion accidents in the tunnels, roads, subways, streets and various kinds of building construction area with the use of Fault Tree Analysis(FTA). based on the police Department and Guns & Explosives Safety Technology Association's researching materials. the explosion accidents have been investigated and analyzed between 1988 and 1977. As the result, we can find out that the majority of the explosion accidents in Korea is the accidents by flown stones(45.7%), like in Japan. So we make the research chart which is needed for analyzing the explosion accident, and then analyze these accidents systematically. using the investigation codes of the industrial accidents. After that, the FTA was performed on the accidents by flown stones. They result fromm non-observance of the safety rules, and lees knowledge of the safety and so on. Moreover several causes are combined and then the accidents are apt to happen. So according to the results of this study, for the protection of the explosion accidents, the specialized safety education is badly needed and the enough investigation of the places before the work along with the management for safety in working must be planned.

  • PDF

A Economic feasibility of Superconducting Fault Current Limiter in Korean Power System (초전도한류기의 계통도입을 위한 경제적 타당성 검토)

  • Kim Jong Yul;Lee Seong Ryul;Yoon Jae Young
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.421-423
    • /
    • 2004
  • As power system grows more complex and power demands increase, the fault current tends to gradually increase. In the near future, the fault current will exceed a circuit breaker rating for some substations, which is an especially important issue in the Seoul metropolitan area because of its highly meshed configuration. Currently, the Korean power system is regulated by changing the 154kV system configuration from a loop connection to a radial system, by splitting the bus where load balance can be achieved, and by upgrading the circuit breaker rating. A development project applying 154kV Superconducting Fault Current Limiter(SFCL) to 154kV transmission systems is proceeding with implementation slated for after 2010. In this paper, the expected price of SFCL in order to assure the economic feasibility is evaluated comparing with upgrading cost of ciui.1 breakers. The results show that the SFCL should be developed under seven times of price of circuit breaker to be competitive against upgrading circuit breakers.

  • PDF

Comparative Studies of Frequency Estimation Method for Fault Disturbance Recorder (고장 왜란 기록기를 위한 주파수 추정 기법의 비교 연구)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.2
    • /
    • pp.87-92
    • /
    • 2012
  • Voltage and current phasor estimation has been executed by GPS-based synchronized PMU, which has become an important way of wide-area blackout protection for the prevention of expending faults in a power system. The PMU technique can not easily get the field data and it is impossible to share information, so that there has been used a FNET(Frequency Monitoring Network) method for the wide-area intelligent protection in USA. It consists of FDR(Fault Disturbance Recorder) and IMS(Information Management System). Therefore, FDR must provide an optimal frequency estimation method that is robust to noise and failure. In this paper, we present comparative studies for the frequency estimation method using IRDWT(Improved Recursive Discrete Wavelet Transform), FRDWT(Fast Recursive Discrete Wavelet Transform), and DFT(Discrete Fourier Transform). The Republic of Korea345[kV] power system modeling data by EMTP-RV are used to evaluate the performance of the proposed two kinds of RDWT(Recursive Discrete Wavelet Transform) and DFT. The simulation results show that the proposed frequency estimation technique using FRDWT could be the optimal frequency measurement method, and thus be applied to FDR.

Effect of shale or mica schist on slope stability (셰일 및 운모편암의 사면안전성에 미치는 영향)

  • Lee, Byung-Joo;Shin, Hee-Soon;SunWoo, Choon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1-11
    • /
    • 2006
  • To be design the slope, the area distributed the shale or mica schist which was metamorphosed by shale must carefully consider the stability. The shale has the detrital materials of which the grain size are 1/256mm and fissility. As the reason the slope of shale is always unstable by bedding slip and fissility but also the joint and fault. Mica schist is also another unstable rock for slope by schistosity, cleavage, axial plane of a fold etc. In general shale and mica schist contain the swelling clay minerals such as smectite, vermiculite and montmorillonite. These minerals make the slope unstable. At OO tunnel construction area for the rail way of the Kyungbu high speed train, the slope of mica schist is very unstable by the distribution phenomena of the discontinuous plane such as joints which are 1-5cm spacing and thrust and strike-slip fault. By the drilling core of this area, most RQD have 0-20%.

  • PDF

Determination of BTB HVDC Operating Point in Metropolitan area (대도시 내 BTB HVDC 투입 시 운전점 결정 방안)

  • Lee, Jae Hyeong;Yoon, Minhan;Han, Changhee;Jang, Gilsoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.331-332
    • /
    • 2015
  • Since $20^{th}$ century, along with the rapid industrial advancement, the concentrated urban development in specific large cities have made people migrate to those cities, thus causing problems in the power system stability. In case of Korea, more than 40% of the power system demand comes from the consumers in Seoul Metropolitan area and the rate is expected to increase. With the continuous increase of power demand, in order to meet the demand for system reliability improvement, the power system was multi-looped for reliability enhancement, the problem of fault current happened. In this situation, there are several methods for fault current reduction likes current limiting reactor, replacing circuit breaker, splitting busses, etc. But these methods reached its limit, power system needs more fundamental solutions such as grid segmentation. In this paper, we assume grid segmentation already has been progressed using VSC BTB HVDC. Then, this paper discusses operating point of HVDC in metropolitan area considering loss minimization and handy flow control. The simulation is proceeded on 2027 KEPCO system.

  • PDF

Tunnel Behavior According to the Pillar Width (터널의 필러부 폭에 따른 터널거동)

  • Kim, Youngsu;Kwon, Taesoon;Jeong, Ilhan;Kim, Kwangil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.15-23
    • /
    • 2009
  • This research area is a greate section of triple tunnels that passes through the fault fractured zone the in the granite area. In this area, tunnel section, pillar width and overburden height are changed consecutively due to declivity of 1 : 4.5 and slope formation of upper part as changed section. That is, stability estimation for each section varying pillar width can be conducted because tunnel diameter changes gradually from 0.5D to 1.0D according to distance of pillar width. We have estimated the stability of pillar width in triple tunnels with monitoring value, and compared the stability with results of numerical analysis.

  • PDF

Improved Coordination Method for Back-up Protection Schemes Based on IEC 61850 (IEC 61850 기반 후비보호계전시스템 보호협조 개선방안)

  • Kim, Hyung-Kyu;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.43-49
    • /
    • 2011
  • A distance relay scheme is commonly used for backup protection. This scheme, called a step distance protection, is comprised of 3 steps for graded zones having different operating time. As for the conventional step distance protection scheme, Zone 2 can exceed the ordinary coverage excessively in case of a transformer protection relay especially. In this case, there can be overlapped protection area from a backup protection relay and, therefore, malfunctions can occur when any fault occurs in the overlapped protection area. Distance relays and overcurrent relays are used for backup protection generally, and both relays have normally this problem, the maloperation, caused by a fault in the overlapped protection area. Corresponding to an IEEE standard, this problem can be solved with the modification of the operating time. On the other hand, in Korea, zones are modified to cope with this problem in some specific conditions. These two methods may not be obvious to handle this problem correctly because these methods, modifying the common rules, can cause another coordination problem. To overcome this problem clearly, this paper describes an improved backup protection coordination scheme using an IEC 61850-based distance relay for transformer backup protection. IEC 61850-based IED(Intelligent Electronic Device) and the network system based on the kernel 2.6 LINUX are realized to verify the proposed method. And laboratory tests to estimate the communication time show that the proposed coordination method is reliable enough for the improved backup protection scheme.