• Title/Summary/Keyword: fatty acids.

Search Result 4,293, Processing Time 0.034 seconds

Separation of Volatile Compounds from Tuna Fish Oil With Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 참치유로부터 휘발성 성분의 분리)

  • Roh Hyung Seob;Youn Hyun Seok;Jung Sun Mi;Hong Yeon Ryun;Kang Kil Yoon;Chun Byung Soo
    • KSBB Journal
    • /
    • v.20 no.1 s.90
    • /
    • pp.12-17
    • /
    • 2005
  • Despite a wide range of fatty acids in fish oil, its the usage are very limited owing to off-flavors and volatile compounds in the oil. A way to extract and remove volatile compounds was performed at a semi-flow extractor by using supercritical carbon dioxide $(SC-CO_2)$. Samples of the oil were treated at the conditions which ranged from $30\;to\;80^{\circ}C$ and from 80 to 200 bar with 10 mL/min flow rate of carbon dioxide. In the oil the volatile compounds were analyzed by gas chromatography. Before extraction with $SC-CO_2$ the oil sample was detected over 129 peaks but 99 compounds were identified. The results demonstrated that at $40^{\circ}C$ and 200 bar extraction condition the volatile compounds in the tuna fish oil were removed, except for 14 compounds identified after extraction and other $SC-CO_2$ extraction conditions reached to high reduction of the volatile compounds.

Synthesis of Cocoa Butter Alternative from Coconut Oil Fraction and Palm Oil Fractions by Lipase-Catalyzed Interesterification (Coconut Oil 분별유와 Palm 분별유로부터 효소적 Interesterification에 의한 코코아 버터 대체유지 합성)

  • Bae, Sang-Kyun;Lee, Kyung-Su;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.10
    • /
    • pp.1487-1494
    • /
    • 2010
  • Structured lipid (SL) for cocoa butter alternative was synthesized by interesterification of coconut oil fraction and palm stearin (6:4 and 8:2, by weight) in a shaking water bath at $60^{\circ}C$ and 180 rpm. It was performed for various reaction times (1, 2, 3, and 6 hr). The reaction was catalyzed by sn-1,3 specific Lipozyme TLIM (immobilized lipase from Thermomyces lanuginosus). SL-solid part was obtained from acetone fractionation at $0^{\circ}C$. SL-solid part was blended with other palm oils and fractions for desirable property of cocoa butter alternative (SL-solid part : palm middle fraction : palm stearin solid : palm oil, 70.4:18.4:2.9:8.3, by weight). In reversed-phase HPLC analysis, triacylglycerol species of cocoa butter alternative had partition number of 40 (10.77%), 42 (13.06%), 44~46 (17.38%) and 48 (51.88%). Major fatty acids of cocoa butter alternative were lauric acid (16.5%), myristic acid (12.28%), palmitic acid (46.03%), and linoleic acid (14.75%). Solid fat content (SFC) and polymorphic form (${\beta}'$ form) of cocoa butter alternative prepared were similar to those of commercial cocoa butter replacer (CBR).

Comparision of Chemical Components of Angelica gigas Nakai and Angelica acutiloba Kitagawa (토당귀와 일당귀의 화학성분 비교)

  • Hwang, Jin-Bong;Yang, Mi-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1113-1118
    • /
    • 1997
  • Chemical components of domestic Angelica gigas Nakai and Angelica acutiloba Kitagawa were analyzed. Proximate analysis of each species showed crude protein 18.1% and 13.4%, crude lipid 8.9% and 4.3%, crude fiber 8.6% and 9.4%, crude ash 7.4% and 8.2%, and carbohydrate 57.0% and 64.7%, respectively. Contents of potassium which was found to be the most abundant mineral in both species were 2,740.0 mg% and 2,582.8 mg%, and those of sucrose were 0.4 % and 0.3% respectively while neither fructose nor glucose were detected in each species. Major fatty acids in Angelica gigas Nakai and Angelica acutiloba Kitagawa were linoleic acid (60.8% and 59.5%), palmitic acid (17.4% and 15.3%), oleic acid (8.8% and 7.7%) (respectively) but there was no significant difference between two species. Arginine was revealed as the most abundant amino acid in both species with 2,599.8 mg% in Angelica gigas Nakai and 1,543.4 mg% in Angelica acutiloba Kitagawa. Angelica gigas Nakai and Angelica acutiloba Kitagawa also were shown to contained 10.5 mg% and 12.2 mg% $vitamin\;B_1$, 0.1 mg% and 0.04 mg%, $vitamin\;B_2$, 4.3% and 0.8% decursin, and 988.0 mg% and 900.0 mg% tannin, respectively.

  • PDF

Identification of a New Agar-hydrolyzing Bacterium Vibrio sp. S4 from the Seawater of Jeju Island and the Biochemical Characterization of Thermostable Agarose (제주도 연안 해양에서 분리한 한천분해 미생물 Vibrio sp. S4의 동정 및 내열성 agarase의 생화학적 특성)

  • Lee, Chang-Ro;Chi, Won-Jae;Bae, Chang-Hwan;Hong, Soon-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.4
    • /
    • pp.314-321
    • /
    • 2015
  • Agar-hydrolyzing bacteria were isolated from the coastal sea water of Jeju Island. One isolate, designated as S4, was selected for further study. The S4 cells were Gram-negative and rod-shaped with smooth beige surfaces and single polar flagellum. Cells were grown at $15-42^{\circ}C$, 0.5-5% (w/v) NaCl, between pH 6.0 and 9.0, and in media containing 0.5-5% (w/v) NaCl. The G+C content was 49.93 mol%. The major fatty acids (>15%) were $C_{18:1}{\omega}7c$, $C_{16:0}$ and Summed feature 3 (comprising $C_{16:1}{\omega}7c/iso-C_{15:0}$ 2-OH). Based on 16S rRNA sequencing and biochemical and chemotaxonomic characteristics, the strain was designated as Vibrio sp. S4. In liquid culture supplemented with 0.1% agar the cell density and agarase activity reached a maximum level in 72 h, while agarase activity in the culture without agar was negligible, implying agarose expression is induced by agar. The optimum pH and temperature for the extracellular crude agarase of S4 were 7.0 and $45^{\circ}C$, respectively. However, it also exhibited 98.6% and 87.6% at $40^{\circ}C$ and $50^{\circ}C$, respectively, of the maximum activity seen at $45^{\circ}C$. The crude agarase hydrolyzed agarose into (neo)agarotetraose and (neo)agarohexaose.

In vitro evaluation of nano zinc oxide (nZnO) on mitigation of gaseous emissions

  • Sarker, Niloy Chandra;Keomanivong, Faithe;Borhan, Md.;Rahman, Shafiqur;Swanson, Kendall
    • Journal of Animal Science and Technology
    • /
    • v.60 no.11
    • /
    • pp.27.1-27.8
    • /
    • 2018
  • Background: Enteric methane ($CH_4$) accounts for about 70% of total $CH_4$ emissions from the ruminant animals. Researchers are exploring ways to mitigate enteric $CH_4$ emissions from ruminants. Recently, nano zinc oxide (nZnO) has shown potential in reducing $CH_4$ and hydrogen sulfide ($H_2S$) production from the liquid manure under anaerobic storage conditions. Four different levels of nZnO and two types of feed were mixed with rumen fluid to investigate the efficacy of nZnO in mitigating gaseous production. Methods: All experiments with four replicates were conducted in batches in 250 mL glass bottles paired with the ANKOM$^{RF}$ wireless gas production monitoring system. Gas production was monitored continuously for 72 h at a constant temperature of $39{\pm}1^{\circ}C$ in a water bath. Headspace gas samples were collected using gas-tight syringes from the Tedlar bags connected to the glass bottles and analyzed for greenhouse gases ($CH_4$ and carbon dioxide-$CO_2$) and $H_2S$ concentrations. $CH_4$ and $CO_2$ gas concentrations were analyzed using an SRI-8610 Gas Chromatograph and $H_2S$ concentrations were measured using a Jerome 631X meter. At the same time, substrate (i.e. mixed rumen fluid+ NP treatment+ feed composite) samples were collected from the glass bottles at the beginning and at the end of an experiment for bacterial counts, and volatile fatty acids (VFAs) analysis. Results: Compared to the control treatment the $H_2S$ and GHGs concentration reduction after 72 h of the tested nZnO levels varied between 4.89 to 53.65%. Additionally, 0.47 to 22.21% microbial population reduction was observed from the applied nZnO treatments. Application of nZnO at a rate of $1000{\mu}g\;g^{-1}$ have exhibited the highest amount of concentration reductions for all three gases and microbial population. Conclusion: Results suggest that both 500 and $1000{\mu}g\;g^{-1}$ nZnO application levels have the potential to reduce GHG and $H_2S$ concentrations.

Effects of Regulate in Feed Intakes on Performance and Meat Quality in Old Laying Hens (산란성계에서 사료 급이량 조절이 생산성과 계육품질에 미치는 영향)

  • Kang, Hwan Ku;Kim, Chan Ho
    • Korean Journal of Poultry Science
    • /
    • v.42 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • This study aimed to investigate the effects of reducing feed intake on performance and meat quality in old laying hens. A total of 200 Hy-Line Brown laying hens (100 weeks old) were randomly allotted to five dietary treatments: control (100% daily feed intake), 90%, 60%, 50%, and 20% daily feed intake. Each treatment was replicated four times with 10 birds per replication and two birds per cage. Ten-bird units were arranged according to a randomized block design. The feeding trial lasted for 4 weeks under a 16L:8D lighting regimen. The results indicated that the daily feed intake correlated with hen-day egg production and feed conversion ratios (P<0.05). The carcass yields and partial ratios were also correlated with daily feed intake (P<0.05). The levels of leukocytes (without basophils) were higher in the 50% and 20% daily feed intake groups than in the other groups. The concentrations of dry matter, crude ash, crude fat, and crude protein, water holding capacity, cooking loss, and fatty acids in the breast meat did not decrease as the daily feed intake decreased. In conclusion, reducing daily feed intake decreased laying performance and carcass yield but had no effect on breast meat quality.

Identification and Characterization of an Endophytic Strain of Streptomyces from Rice Roots (Orysa sativa L.) (벼(Orysa sativa L.) 뿌리로부터 분리된 내생 Streptomyces 균주의 동정 및 특성)

  • Kim, Jae-Heon;Lee, Jun-Kwan
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.375-380
    • /
    • 2011
  • We isolated an endophytic actionmycete from root tissues of rice plant collected from paddy field near Dankook University, Cheonan, Korea. Surface sterilized roots were laid on the selective agar plates and incubated. The powdery actinomycete colonies appeared on the root surface after four weeks incubation. We isolated a strain JK-5 among them and could determine its taxonomical position as Streptomyces diastaticus subsp. ardesiacus by using 16S ribosomal DNA sequencing. The chemotaxonomical and morphological studies confirmed the taxonomical position of the strain JK-5. The shape of aerial hyphae was flexible and they contained spore chains with more than 30 smooth spherical spores per chain. Cell walls contained LL-diaminopimelic acid. There was no characteristic sugar in whole-cell hydrolysates. The major fatty acids were anteiso-15:0, anteiso-17:0 and iso-16:0. The specific menaquinones, MK-9 ($H_6$), MK-9 ($H_8$), were detected. The GC content was 72%. Antifungal activities of the strain JK-5 were relatively strong against fungal plant pathogens. The endophytic growth of the strain JK-5 was confirmed by SEM observation of the root and stem of the infected rice plant.

Mitochondrial Ca2+ Uptake Relieves Palmitate-Induced Cytosolic Ca2+ Overload in MIN6 Cells

  • Ly, Luong Dai;Ly, Dat Da;Nguyen, Nhung Thi;Kim, Ji-Hee;Yoo, Heesuk;Chung, Jongkyeong;Lee, Myung-Shik;Cha, Seung-Kuy;Park, Kyu-Sang
    • Molecules and Cells
    • /
    • v.43 no.1
    • /
    • pp.66-75
    • /
    • 2020
  • Saturated fatty acids contribute to β-cell dysfunction in the onset of type 2 diabetes mellitus. Cellular responses to lipotoxicity include oxidative stress, endoplasmic reticulum (ER) stress, and blockage of autophagy. Palmitate induces ER Ca2+ depletion followed by notable store-operated Ca2+ entry. Subsequent elevation of cytosolic Ca2+ can activate undesirable signaling pathways culminating in cell death. Mitochondrial Ca2+ uniporter (MCU) is the major route for Ca2+ uptake into the matrix and couples metabolism with insulin secretion. However, it has been unclear whether mitochondrial Ca2+ uptake plays a protective role or contributes to lipotoxicity. Here, we observed palmitate upregulated MCU protein expression in a mouse clonal β-cell, MIN6, under normal glucose, but not high glucose medium. Palmitate elevated baseline cytosolic Ca2+ concentration ([Ca2+]i) and reduced depolarization-triggered Ca2+ influx likely due to the inactivation of voltage-gated Ca2+ channels (VGCCs). Targeted reduction of MCU expression using RNA interference abolished mitochondrial superoxide production but exacerbated palmitate-induced [Ca2+]i overload. Consequently, MCU knockdown aggravated blockage of autophagic degradation. In contrast, co-treatment with verapamil, a VGCC inhibitor, prevented palmitate-induced basal [Ca2+]i elevation and defective [Ca2+]i transients. Extracellular Ca2+ chelation as well as VGCC inhibitors effectively rescued autophagy defects and cytotoxicity. These observations suggest enhanced mitochondrial Ca2+ uptake via MCU upregulation is a mechanism by which pancreatic β-cells are able to alleviate cytosolic Ca2+ overload and its detrimental consequences.

A Study on The Preparation of Poly(alkyl methacrylate-co-maleic anhydride) as Cold Flow Improvers for Biodiesel Fuels (바이오디젤용 저온 유동성 향상제로서의 폴리 (알킬메타크릴레이트-공-무수말레인산) 제조 연구)

  • Hong, Jin-Sook;Chung, Keun-Wo;Kim, Young-Wun;Kim, Nam-Kyun;Im, Dae-Jae
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.232-240
    • /
    • 2012
  • Bio-diesel (BD) is the mono alkyl esters of long chain fatty acids derived from renewable feed stocks like vegetable oils or animal fats. Bio-diesel shows poorer fuel properties than that of diesel fuel in a cold condition. For the diesel fuel, many cold flow improvers have been developed; however, since primary ingredients of bio-diesel are different from those of the diesel fuel, there is a limit to the cold flow improvement when the same cold flow improvers are added to bio diesel. In this study, to improve low temperature properties of bio-diesel, we developed a cold flow improver using an alkyl methacrylate monomer, prepared via ester reaction, and maleic anhydride and also conducted a ring opening reaction using amine. We characterized the products using $^1H-NMR$, FT-IR and GPC methods. In addition, the cold flow improvements of the products in Soybean BD and Palm BD in the concentration rage of 1000~10000 ppm were investigated. It was found that the addition of LMA2SMA6MA2-C8A in Soybean BD improved the pour point by $12.5\;^{\circ}C$.

The Effect of Horseradish Powder Level in Fattening Pig Diet on Odorous Compound Concentration from Manure (비육돈 사료의 고추냉이 첨가수준별 분뇨의 악취물질 농도 변화)

  • Lee, K.H.;Hwang, O.H.;Park, K.H.;Yang, S.H.;Song, J.I.;Jeon, J.H.;Lee, J.Y.;Ohh, S.J.;Sung, H.G.;Choi, D.Y.;Cho, S.B.
    • Journal of Animal Environmental Science
    • /
    • v.18 no.sup
    • /
    • pp.41-46
    • /
    • 2012
  • This study was performed to test the effect of horseradish powder in fattening pig diet on odorous compound concentration from manure. Twenty fattening boars [Landrace ${\times}$ Yorkshire) ${\times}$ Duroc] weighing an average body weight of $68.4{\pm}4.95}$ kg were randomly assigned to one of 4 treatments (horseradish level in diets: 0, 0.01, 0.02, 0.03%) based on their body weight. This experiment was a randomized complete block (RCB) design using 5 pigs per treatment with 1 pig per metabolizable cage. Pigs were fed experimental diet (amount proportional to 3% of their body weight) twice a day (09:00 and 16:00) for 7 d after having 14 d adaptation period. Experimental diets were mixed with water by 1:2.5 v/v. Concentration of volatile fatty acids (VFAs) was highest (p<0.05) when pigs fed diet with 0.02% horseradish powder. Level of phenol compounds including phenol and p-cresol were decreased (p<0.05) in 0.01~0.02% horseradish treatment group compared with control group. Concentration of indoles including indole and skatole was lowest (p<0.05) in 0.03% horseradish treatment group compare to others. Therefore, results from our current study suggest that the optimal levels of horseradish powder in diet for reducing phenol and indole compounds in pig manure were 0.02 and 0.03%, respectively.