• Title/Summary/Keyword: fatigue simulation

Search Result 409, Processing Time 0.023 seconds

Influence of laser peening on fatigue crack initiation of notched aluminum plates

  • Granados-Alejo, Vignaud;Rubio-Gonzalez, Carlos;Parra-Torres, Yazmin;Banderas, J. Antonio;Gomez-Rosas, Gilberto
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.739-748
    • /
    • 2017
  • Notches such as slots are typical geometric features on mechanical components that promote fatigue crack initiation. Unlike for components with open hole type notches, there are no conventional treatments to enhance fatigue behavior of components with slots. In this work we evaluate the viability of applying laser shock peening (LSP) to extend the fatigue life of 6061-T6 aluminum components with slots. The feasibility of using LSP is evaluated not only on damage free notched specimens, but also on samples with previous fatigue damage. For the LSP treatment a convergent lens was used to deliver 0.85 J and 6 ns laser pulses 1.5 mm in diameter by a Q-switch Nd: YAG laser, operating at 10 Hz with 1064 nm of wavelength. Residual stress distribution was assessed by the hole drilling method. A fatigue analysis of the notched specimens was conducted using the commercial code FE-Safe and different multiaxial fatigue criteria to predict fatigue lives of samples with and without LSP. The residual stress field produced by the LSP process was estimated by a finite element simulation of the process. A good comparison of the predicted and experimental fatigue lives was observed. The beneficial effect of LSP in extending fatigue life of notched components with and without previous damage is demonstrated.

Simulation-based fatigue life assessment of a mercantile vessel

  • Ertas, Ahmet H.;Yilmaz, Ahmet F.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.835-852
    • /
    • 2014
  • Despite the availability of other transport methods such as land and air transportations, marine transportation is the most preferred and widely used transportation method in the world because of its economical advantages. In service, ships experience cyclic loading. Hence, it can be said that fatigue fracture, which occurs due to cyclic loading, is one of the most critical failure modes for vessels. Accordingly, this makes fatigue failure prevention an important design requirement in naval architecture. In general, a ship structure contains many structural components. Because of this, structural modeling typically relies on Finite Element Analysis (FEA) techniques. It is possible to increase fatigue performance of the ship structures by using FEA in computer aided engineering environment. Even if literature papers as well as rules of classification societies are available to assess effect of fatigue cracks onto the whole ship structure, analytical studies are relatively scarce because of the difficulties of modeling the whole structure and obtaining reliable fatigue life predictions. As a consequence, the objective of this study is to improve fatigue strength of a mercantile vessel against fatigue loads via analytical method. For this purpose, the fatigue life of the mercantile vessel has been investigated. Two different type of fatigue assessment models, namely Coffin-Manson and Morrow Mean stress approaches, were used and the results were compared. In order to accurately determine the fatigue life of the ship, a nonlinear finite element analysis was conducted considering plastic deformations and residual stresses. The results of this study will provide the designer with some guidelines in designing mercantile vessels.

Fatigue Life Prediction of CFRP using Fatigue Progressive Damage Model (피로누적손상을 이용한 직조 CFRP의 피로수명 예측)

  • Jang, Jae-Wook;Cho, Je-Hyoung;Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.248-254
    • /
    • 2015
  • The strength and fatigue life of Satin and Twill-woven CF/epoxy composite(CFRP) have been investigated. Damage mechanism fatigue method has been used to assess fatigue damage accumulation. It is based on measured residual stiffness and residual strength of carbon-fiber reinforced plastic(CFRP) laminates under cyclic loading. Fatigue damage evolution in composite laminates and predict fatigue life of the laminates were simulated by finite element analysis(FEA) method. The stress analysis was carried out in MSC patran/Nastran. A modified Hashin's failure criterion di rmfjapplied to predict the failure of the experimental data of fatigue life but a Ye-delamination criterion was ignored because of 2D modeling. Almost linear stiffness and strength degradation were observed during most of the fatigue process. These stress distribution data were adopted in the simulation to simulate fatigue behavior and estimate life of the laminates. From the results, the predicted fatigue life is more conservatively estimated than the experimental results.

Prediction of Initiation Location and Direction of Fretting Fatigue Crack (프레팅 피로 균열의 발생 위치 및 방향 예측)

  • Huh, Yong-Hak;R. E. Edwards;M.W. Brown;E.R. de Ios Rios
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1185-1192
    • /
    • 2003
  • Governing parameters for determination of the location of crack initiation and direction of crack initiation were investigated by performing fretting fatigue tests and analysis on Al 2024-T351. Fatigue tests were carried out using biaxial fatigue machine. It was shown that the dominant fatigue crack tended to initiate at the outer edge of one of the four bridge pads, growing at an angle beneath a pad, before turning perpendicular to the orientation of the axial load. Distribution of stresses generated during fretting fatigue loading along the interface was calculated by elastic FE simulation. It can be known that the location of crack initiation can be predicted by using the maximum tangential stress range. Futhermore, the crack initiation direction can also be predicted by a maximum tangential stress range.

A Study on the Fatigue Strength Evaluation of Sintered Spur Gears (소결치차의 피로강도평가에 관한 연구)

  • Lyu, Sung-Ki;Katsmi, Inoue
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.106-112
    • /
    • 1999
  • It is very important to have exact informations on the properties and characteristics of the sintered steel as a new material of machine elements. The bending fatigue tests are performed for the sintered steel bend specimens of various densities 6.6 to 7.0 g/$cm^3$ and the sintered spur gear to consisted of Fe-Cu-C. The fatigue test at a constant stress amplitude is performed by using an electrohydraulic servo-controlled pulsating tester. Consequently, the S-N curves are obtained. The fatigue strength S for fatigue life N of the specimen with the initial length of crack ai is simulated, and they are shown as N-S-A curves. This study investigate the crack growth characteristics by experiments and present crack growth simulation method for sintered gear

  • PDF

A Study on the Thermal Fatigue of Solder Joint by Package Types (패키지 유형에 따른 솔더접합부의 열피로에 관한 연구)

  • 김경섭;신영의
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.78-83
    • /
    • 1999
  • Solder joint is the weakest part which connects in mechanically and electronically between package body and PCB(Printed Circuit Board). Recently, the reliability of solder joint become the most critical issue in surface mounted technology. The solder joint interconnection between plastic package and PCB is susceptible to shear stress during thermal storage due to the mismatch in coefficient of thermal expansion between plastic package and PCB. A general computational approach to determine the effect of solder joint shape on the fatigue life presented. The thermal fatigue life was estimated from the engelmaier equation which was obtained from the temperature cycling loading($-65^{\circ}C$ to $150^{\circ}C$). As result of the simulation, TSOP structure has the shortest thermal fatigue life and the same structure Copper lead has 2.5 times as much fatigue life as Alloy 42 lead. In BGA structure, fatigue life time extended 80 times when underfill material exists.

  • PDF

A Numerical Estimation of Fatigue Strength of Welded Steel Structures with Residual Stresses (용접 잔류음력을 고려한 강구조물의 피로강도평가)

  • Chung, Heung-Jin;Yoo, Byoung-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.265-270
    • /
    • 2007
  • According to previous research, welding-induced residual stresses in steel structures can significantly affect the fatigue behaviour. Usually, high tensile residual stresses up to the yield strength are conservatively assumed at the weld toes. This conservative assumption can result in misleading fatigue assessments. Thee welding-induced residual stresses need be known in advance for a reliable fatigue assessment, which becomes possible to an increasing extent by numerical welding simulation. In this study, a fatigue Analysis technique for steel structures with welding induced residual stress is presented. First, We calculate the history of temperature according with welding process. Secondly, residual stress with a welding thermal history was evaluated by non-linear thermal stress analysis and lastly, fatigue strength is estimated with modified Goodman equation which can consider the effect of mean stress level.

  • PDF

Prediction on Fatigue Life of Messenger Wire with Service Environments (사용환경에 따른 조가선의 피로수명 예측)

  • Chang Seky;Kim Yong-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.525-532
    • /
    • 2005
  • Fatigue life of catenary wires in various environments is reduced when stress is concentrated on some points, which are often found in corroded areas by surrounding pollutants. Therefore, the fatigue test were performed in order to investigate the effect of the surface corrosion on the destructive behavior in service environment and accelerated corrosion environment as well as th examine the corrosive property and mechanism of the catenary wires. In the fatigue test of the messenger stranded wire, the corrosion degraded materials showed 35~50% of fatigue life at a same stress amplitude compared to original material. Because the catenary wires have variable load by the interaction of periodic contacts with pantographs the maximum stresses of trolley wire and messenger wire calculated by simulation at the messenger wire during operation was estimated thought the corrosion behavior interpretation of variable stress and fatigue test.

A computer based simulation model for the fatigue damage assessment of deep water marine riser

  • Pallana, Chirag A.;Sharma, Rajiv
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.87-142
    • /
    • 2022
  • An analysis for the computation of Fatigue Damage Index (FDI) under the effects of the various combination of the ocean loads like random waves, current, platform motion and VIV (Vortex Induced Vibration) for a certain design water depth is a critically important part of the analysis and design of the marine riser platform integrated system. Herein, a 'Computer Simulation Model (CSM)' is developed to combine the advantages of the frequency domain and time domain. A case study considering a steel catenary riser operating in 1000 m water depth has been conducted with semi-submersible. The riser is subjected to extreme environmental conditions and static and dynamic response analyses are performed and the Response Amplitude Operators (RAOs) of the offshore platform are computed with the frequency domain solution. Later the frequency domain results are integrated with time domain analysis system for the dynamic analysis in time domain. After that an extensive post processing is done to compute the FDI of the marine riser. In the present paper importance is given to the nature of the current profile and the VIV. At the end we have reported the detail results of the FDI comparison with VIV and without VIV under the linear current velocity and the FDI comparison with linear and power law current velocity with and without VIV. We have also reported the design recommendations for the marine riser in the regions where the higher fatigue damage is observed and the proposed CSM is implemented in industrially used standard soft solution systems (i.e., OrcaFlex*TM and Ansys AQWA**TM), Ms-Excel***TM, and C++ programming language using its object oriented features.

Characteristics of Parameters for the Distribution of fatigue Crack Growth Lives wider Constant Stress Intensity factor Control (일정 응력확대계수 제어하의 피로균열전파수명 분포의 파라메터 특성)

  • 김선진
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.54-59
    • /
    • 2003
  • The characteristics of the parameters for the probability distribution of fatigue crack growth life, using the non-Gaussian random process simulation method is investigated. In this paper, the material resistance to fatigue crack growth is treated as a spatial random process, which varies randomly on the crack surface. Using the previous experimental data, the crack length equals the number of cycle curves that are simulated. The results are obtained for constant stress intensity factor range conditions with stress ratios of R=0.2, three specimen thickness of 6, 12 and 18mm, and the four stress intensity level. The probability distribution function of fatigue crack growth life seems to follow the 3-parameter Wiubull,, showing a slight dependence on specimen thickness and stress intensity level. The shape parameter, $\alpha$, does not show the dependency of thickness and stress intensity level, but the scale parameter, $\beta$, and location parameter, ${\gamma}$, are decreased by increasing the specimen thickness and stress intensity level. The slope for the stress intensity level is larger than the specimen thickness.