• Title/Summary/Keyword: fatigue properties

Search Result 1,119, Processing Time 0.03 seconds

Effect of Dry-Electropolishing on the High Cycle Fatigue Properties of Ti-6Al-4V Alloy Manufactured by Selective Laser Melting (선택적 레이저 용융법으로 제조된 Ti-6Al-4V 합금의 고 주기 피로 특성에 미치는 건식 전해 연마의 영향)

  • Yang, Dong-Hoon;Kim, Young-Kyun;Hwang, Yujin;Kim, Myoung-Se;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.471-476
    • /
    • 2019
  • Additively manufactured metallic components contain high surface roughness values, which lead to unsatisfactory high cycle fatigue resistance. In this study, high cycle fatigue properties of selective laser melted Ti-6Al-4V alloy are investigated and the effect of dry-electropolishing, which does not cause weight loss, on the fatigue resistance is also examined. To reduce the internal defect in the as-built Ti-6Al-4V, first, hot isostatic pressing (HIP) is conducted. Then, to improve the mechanical properties, solution treatment and aging are also implemented. Selective laser melting (SLM)-built Ti64 shows a primary α and secondary α+β lamellar structure. The sizes of secondary α and β are approximately 2 ㎛ and 100 nm, respectively. On the other hand, surface roughness Ra values of before and after dry-electropolishing are 6.21 ㎛ and 3.15 ㎛, respectively. This means that dry-electropolishing is effective in decreasing the surface roughness of selective laser melted Ti-6Al-4V alloy. The comparison of high cycle fatigue properties between before and after dry-electropolished samples shows that reduced surface roughness improves the fatigue limit from 150 MPa to 170 MPa. Correlations between surface roughness and high cycle fatigue properties are also discussed based on these findings.

Effect of Fully and Semi Austempering Treament on the Fatigue Properties of Ductile Cast Iron (완전 및 부분 오스템퍼링 처리가 구상흑연주철의 피로특성에 미치는 영향)

  • Lim Bok-kyu;Hwang Jung-gak;Kim Dong-Youl;Kim Min-gun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.462-469
    • /
    • 2005
  • Single phase bainite structure which is obtained by the conventional austempering treatment reduces the ductility of ductile cast iron. Because of the reduction of ductility it is possible to worsen the fatigue properties. Therefore, semi austempered ductile iron which is treated from ${\alpha}+{\gamma}$ is prepared to investigate the static strength and fatigue properties in comparison with fully austempered ductile iron (is treated from ${\gamma}$). In spite of semi austempered ductile iron shows the $86{\%}$ increase of ductility. Also, semi austempered ductile iron shows the higher fatigue limit and lower fatigue crack growth rate as compared with fully austempered ductile iron. By the fractographical analysis, it is revealed that the ferrite obtained by semi austempering process brings about the plastic deformation(ductile striation) of crack tip and gives the prior path of crack propagation. The relatively low crack growth rate in semi austempered specimen is caused by above fractographical reasons.

Uniaxial fatigue, creep and stress-strain responses of steel 30CrNiMo8

  • Brnic, Josip;Brcic, Marino;Krscanski, Sanjin;Lanc, Domagoj;Chen, Sijie
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.409-417
    • /
    • 2019
  • The choice of individual material for industrial application is primarily based on knowledge of its behavior in similar applications and similar environmental conditions. Contemporary design implies knowledge of material behavior and knowledge in the area of structural analysis supported by large capacity computers. Bearing this in mind, this paper presents and analyzes the experimental results related to the mechanical properties of the material considered (30CrNiMo8/1.6580/AISI 4340) at different temperatures as well as its creep and fatigue behavior. All experimental tests were carried out as uniaxial tests. The test results related to the mechanical properties are presented in the form of engineering stress-strain diagrams. The results related to the creep behavior of the material are shown in the form of creep curves, while the fatigue of the material is shown in the form of stress - life (S - N) diagram. Based on these experimental results, the values of the following properties are determined: ultimate tensile strength (${\sigma}_{m,20}=696MPa$), yield strength (${\sigma}_{0.2,20}=355.5MPa$), modulus of elasticity ($E_{,20}=217GPa$) and fatigue limit (${\sigma}_{f,20,R=-1}=280.4MPa$). Results related to fatigue tests were obtained at room temperature and stress ratio R = -1.

DEVELOPMENT OF GREEN'S FUNCTION APPROACH CONSIDERING TEMPERATURE-DEPENDENT MATERIAL PROPERTIES AND ITS APPLICATION

  • Ko, Han-Ok;Jhung, Myung Jo;Choi, Jae-Boong
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.101-108
    • /
    • 2014
  • About 40% of reactors in the world are being operated beyond design life or are approaching the end of their life cycle. During long-term operation, various degradation mechanisms occur. Fatigue caused by alternating operational stresses in terms of temperature or pressure change is an important damage mechanism in continued operation of nuclear power plants. To monitor the fatigue damage of components, Fatigue Monitoring System (FMS) has been installed. Most FMSs have used Green's Function Approach (GFA) to calculate the thermal stresses rapidly. However, if temperature-dependent material properties are used in a detailed FEM, there is a maximum peak stress discrepancy between a conventional GFA and a detailed FEM because constant material properties are used in a conventional method. Therefore, if a conventional method is used in the fatigue evaluation, thermal stresses for various operating cycles may be calculated incorrectly and it may lead to an unreliable estimation. So, in this paper, the modified GFA which can consider temperature-dependent material properties is proposed by using an artificial neural network and weight factor. To verify the proposed method, thermal stresses by the new method are compared with those by FEM. Finally, pros and cons of the new method as well as technical findings from the assessment are discussed.

Characteristics of Composite Body Panel (복합재료 Body Panel의 특성평가)

  • Nam, Hyun-Wook;Pyun, Hyun-Joong;Lee, Young-Tae;Han, Kyung-Seop
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.109-114
    • /
    • 2000
  • A research fur development of composite body panel is in progress for lightening tare. In this study, experiments on estimation of mechanical properties of LPMC (Low pressure molding compound) including fatigue and impact characteristics were carried out. The experiments show that LPMC satisfied basic requirements of car body panel. The fatigue life of LPMC was predicted and the material degradation due to fatigue and impact were fined out.

  • PDF

The Low Cycle Fatigue behavior of Laser Welded Sheet Metal (박판형 레이저 용접재의 저주기 피로 특성)

  • 김웅찬;곽대순;김석환;오택열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1025-1028
    • /
    • 2004
  • In this paper, we studied low cycle fatigue behavior of laser welded sheet metal that used automobile body panel. Specimens were manufactured as weld condition and sheet metal using automobile manufacturing company at present. For to know mechanical properties, micro Vicker's hardness test was performed of specimens. But, we can't confirm mechanical properties of weld bead and heat affected zone because laser weld makes very narrow weld bead and heat affected zone than other welding method. Therefore, we performed low cycle fatigue test with similar weldment, dissimilar weldment, similar thickness and dissimilar weldment, and dissimilar thickness and dissimilar weldment for fatigue properties of thickness and welding direction. As well, we analysis stress distribution of base metal, weld bead, and heat affected zone according to strain load using finite element method.

  • PDF

Development of Material Properties Measurement and Fatigue Life Evaluation System (재료물성치 측정 및 피로수명평가 시스템의 개발)

  • 박종주;서상민;최용식;김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1465-1473
    • /
    • 1994
  • This paper describes the development strategy and contents of a fatigue life evaluation system, FLEVA. The system is composed of 4 parts; material properties, load histories, cycle counting and life prediction. The cycle counting is based on the rain-flow counting method and peak counting method, and the life prediction is performed based on the linear damage rule. Material properties(static, fatigue) are also provided as a database obtained by a computer aided test system. Case study is performed to verify the developed program.

Flexural Toughness and Fatigue Behavior of Steel Fiber Reinforced Rapid-set Cement Concrete (강섬유보강 초속경시멘트 콘크리트의 휨인성 및 피로거동)

  • Lee, Bong-Hak;Hong, Chang-Woo;Kim, Dong-Ho
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.163-172
    • /
    • 1999
  • This study is conducted on the flexural toughness and flexural fatigue test to fine the mechanical properties of steel fiber reinforced rapid-set cement concrete. Experimental investigation is examined according to fiber contents(0, 0.4, 0.7, 1.0, 1.5%), fiber aspect ratio(58, 60, 83), fiber type (hooked, crimped fiber), and cement type (normal portland & rapid-set cement). The principal results obtained through this study are as follows; toughness and fatigue resistance tend to considerably increase with fiber contents, fiber aspect ration. And hooked fiber is improved better than crimped fiber. Concrete using rapid set cement is increased strength properties compared with concrete using normal portland cement, but relative strength properties behavior and fatigue resistance show a tendency to decrease a little.

  • PDF

Wear and Fatigue Properties of Surface-Hardened Rail Material (표면 강화처리 레일의 마모 및 피로 특성)

  • Chang, Seky;Pyun, Young-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.380-385
    • /
    • 2016
  • Railway tracks are repeatedly overstressed and damaged owing to increase in passing tonnage and numerous contact cycles between wheels of train and rails. In order to ensure safe train operation, heat-treated rails are used in addition to regular inspection and maintenance of these rails. Normal rails were treated using ultrasonic nanocrystal surface modification (UNSM) to strengthen the surface of rails. A few changes in surface properties were detected with respect to hardness and compressive residual stress after UNSM treatment. Wear and rolling contact fatigue tests were performed using rails whose surfaces were hardened by UNSM and heat-treated rails. The amount of wear and fatigue life cycles were measured to estimate the effect of UNSM on the rail material. The material of the surfacehardened rail showed improved wear and rolling contact fatigue properties.