Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.6.471

Effect of Dry-Electropolishing on the High Cycle Fatigue Properties of Ti-6Al-4V Alloy Manufactured by Selective Laser Melting  

Yang, Dong-Hoon (Department of Materials Science and Engineering, Inha University)
Kim, Young-Kyun (Department of Materials Science and Engineering, Inha University)
Hwang, Yujin (Department of Materials Science and Engineering, Inha University)
Kim, Myoung-Se (Auratech Co.)
Lee, Kee-Ahn (Department of Materials Science and Engineering, Inha University)
Publication Information
Journal of Powder Materials / v.26, no.6, 2019 , pp. 471-476 More about this Journal
Abstract
Additively manufactured metallic components contain high surface roughness values, which lead to unsatisfactory high cycle fatigue resistance. In this study, high cycle fatigue properties of selective laser melted Ti-6Al-4V alloy are investigated and the effect of dry-electropolishing, which does not cause weight loss, on the fatigue resistance is also examined. To reduce the internal defect in the as-built Ti-6Al-4V, first, hot isostatic pressing (HIP) is conducted. Then, to improve the mechanical properties, solution treatment and aging are also implemented. Selective laser melting (SLM)-built Ti64 shows a primary α and secondary α+β lamellar structure. The sizes of secondary α and β are approximately 2 ㎛ and 100 nm, respectively. On the other hand, surface roughness Ra values of before and after dry-electropolishing are 6.21 ㎛ and 3.15 ㎛, respectively. This means that dry-electropolishing is effective in decreasing the surface roughness of selective laser melted Ti-6Al-4V alloy. The comparison of high cycle fatigue properties between before and after dry-electropolished samples shows that reduced surface roughness improves the fatigue limit from 150 MPa to 170 MPa. Correlations between surface roughness and high cycle fatigue properties are also discussed based on these findings.
Keywords
Selective laser melting; Dry-electropolishing; High cycle fatigue; Ti-6Al-4V;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Shamsaei, A. Yadollahi, L. Bian and S. M. Thompson: Addit. Manuf., 8 (2015) 12.   DOI
2 C. Qiu, N. J. E. Adkins and M. M. Attallah: Mater. Sci. Eng. A, 578 (2013) 230.   DOI
3 B. AlMangour, Y.-K. Kim, D. Grzesiak and K.-A. Lee: Compos. B Eng., 156 (2019) 51.   DOI
4 M. Vaezi, H. Seitz and S. Yang: Int. J. Adv. Manuf. Technol., 67 (2013) 1721.   DOI
5 M. Niinomi: Mater. Sci. Eng. A, 243 (1998) 231.   DOI
6 I. Gurrappa: Mater. Charact., 51 (2003) 131.   DOI
7 F. H. Froes, H. Friedrich, J. Kiese and D. Bergoint: JOM, 56 (2004) 40.
8 H. K. Rafi, T. L. Starr and B. E. Stucker: Int. J. Adv. Manuf. Technol., 69 (2013) 1299.   DOI
9 T. Vilaro, C. Colin and J. D. Bartout: Metall. Mater. Trans. A, 42A (2011) 3190.
10 S. Leuders, M. Thone, A. Riemer, T. Niendorf, T. Troster, H. A. Richard and H. J. Maier: Int. J. Fatigue, 48 (2013) 300.   DOI
11 Y.-K. Kim, S.-H. Park, J.-H. Yu, B. Almangour and K.-A. Lee: Mater. Sci. Eng. A, 715 (2018) 33.   DOI
12 M. Benedetti, V. Fontanari, M. Bandini, F. Zanini and S. Carmignato: Int. J. Fatigue, 107 (2018) 96.   DOI
13 Y. Zhang, J. Li and S. Che: Int. J. Electrochem. Sci., 13 (2018) 4792.
14 Z. Chen, X. Wu, D. Tomus and C. H. J. Davies: Addit. Manuf., 21 (2018) 91.   DOI
15 S. L. Campanelli, N. Contuzzi, A. D. Ludovico, F. Caiazzo, F. Cardaropoli and V. Sergi: Materials, 7 (2014) 4803.   DOI
16 Y.-K. Kim, S.-H. Park, Y.-J. Kim, B. Almangour and K.-A. Lee: Metall. Mater. Trans. A, 49 (2018) 5763.   DOI
17 S. Liu and Y. C. Shin: Mater. Des., 164 (2019) 107552.   DOI
18 A. R. Balachandramurthi, J. Moverare, N. Dixit and R. Pederson: Mater. Sci. Eng. A, 735 (2018) 463.   DOI
19 S. H. Kee, W. J. Kim and J. P. Jung: Korean J. Met. Mater., 51 (2013) 89.   DOI