• Title/Summary/Keyword: fatigue prediction

Search Result 666, Processing Time 0.029 seconds

Vibration Characterization of Cross-ply Laminates Beam with Fatigue Damage (피로 손상을 입은 직교 복합재료 적층보의 진동 특성)

  • 문태철;김형윤;황운봉;전시문;김동원;김현진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.1-4
    • /
    • 2001
  • A new non-destructive fatigue prediction model of the composite laminates is developed. The natural frequencies of fatigue-damaged laminates under extensional loading are related to the fatigue lift of the laminates by establishing the equivalent flexural stiffness reduction as a function of the elastic properties of sublaminates. The flexural stiffness is derived by relating the $90^{\circ}$-ply elastic modulus reduction, and using the laminate plate theory to the degraded elastic modulus and the intact elastic modulus of other laminate. The natural frequency reduction model, in which the dominant fatigue mode can be identified from the sensitivity scale factors of sublaminate elastic properties, provides natural frequency vs. fatigue cycle curves for the composite laminates. Vibration tests were also conducted on $[\textrm{90}_{2}\textrm{0}_{2}]_s$ carbon/epoxy laminates to verify the natural frequency reduction model. Correlations between the predictions of the model and experimental results are good.

  • PDF

A Study for the Prediction Fatigue Limit in a Case Hardening Material (표면경화재의 피로한도 예측에 대한 연구)

  • 이상훈;박원태
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.20-27
    • /
    • 1999
  • The standard of the allowed stress in designing components such as shafts used in machinery and aircraft should be determined. It is very important to estimate fatigue strength of a component analytically, because service stress of the components is usually under the level of its fatigue limit. Improving the fatigue strength of each component in machinery is essential for high performance, lightness, and endurance. Surface treatment of components is widely used for these purpose. In this research, the fatigue behaviors of SCM415 steel and carbonitried SCM415 steel are examined. In the analysis of the fatigue behaviors of the carbonitrided SCM 415 steel, we propose a modified fatigue strength evaluation model and modified formulae.

  • PDF

Prediction of Fatigue Life of 3D Jang-gu Rubber Specimens (3차원 장구형 고무시편의 피로수명예측)

  • Han, S.W.;Kim, J.Y.;Kim, W.D.;Kim, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.710-715
    • /
    • 2001
  • Rubber is used extensively in many industries because of its large reversible elastic deformation, excellent damping and energy absorption characteristics, and wide availability. It becomes very important to predict the fatigue life of rubber components. But a great deal of time and cost are necessary for the fatigue test of rubber components. In this study the fatigue life of rubber components is evaluated by performing the fatigue test of a specimen and FE analysis. The fatigue life of Jang-gu type specimen which is considered as a simple rubber component is predicted and compared with experimental results. Its material is natural rubber of which hardness is 60 and used for the engine mount of commercial vehicles.

  • PDF

Fatigue Life Prediction of Suspension Knuckle by CAE Technology (CAE 기법을 이용한 서스펜션 너클의 피로수명 평가)

  • Kim, Y.J.;Suh, M.W.;Suh, S.M.;Suh, J.H.;Kim, J.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.112-121
    • /
    • 1995
  • Various CAE technologies are used in automobile industries for the purpose of design and analysis. In this paper, a fatigue life evaluation system FLEVA based on the local strain approach is developed and the system is applied for the fatigue strength design of the suspension knuckle, an automobile component. Various steps such as material test, finite element analysis and cumulative fatigue damage analysis of the suspension knuckle were taken. The usefulness of the approach was verified by the fatigue test on the suspension knuckle.

  • PDF

Design of Composite Multilayer Surface Antenna Structure and Its Bending Fatigue Characteristics

  • Moon, Tae-Chul;Hwang, Woon-Bong
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.215-224
    • /
    • 2008
  • The present study aims to design a multilayer microstrip antenna with composite sandwich construction and investigate fatigue behavior of this multilayer SAS (surface antenna structure) that was asymmetric sandwich structure for the next generation of structural surface technology. This term, SAS, indicates that the structural surface becomes an antenna. Constituent materials were selected considering electrical properties, dielectric constant and tangent loss as well as mechanical properties. For the antenna performance, antenna elements inserted into structural layers were designed for satellite communication at a resonant frequency of 12.2 GHz. From electrical measurements, it was shown that antenna performances were in good agreement with design requirements. In cyclic 4-point bending, flexure behavior was investigated by static and fatigue test. Fatigue life curve of the SAS was obtained. The experimental results of bending fatigue were compared with single load level fatigue life prediction equations and in good agreement. The SAS concept is can be extended to give a useful guide for manufacturers of structural body panels as well as antenna designers.

Prediction on Fatigue Life of Messenger Wire with Service Environments (사용환경에 따른 조가선의 피로수명 예측)

  • Chang Seky;Kim Yong-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.525-532
    • /
    • 2005
  • Fatigue life of catenary wires in various environments is reduced when stress is concentrated on some points, which are often found in corroded areas by surrounding pollutants. Therefore, the fatigue test were performed in order to investigate the effect of the surface corrosion on the destructive behavior in service environment and accelerated corrosion environment as well as th examine the corrosive property and mechanism of the catenary wires. In the fatigue test of the messenger stranded wire, the corrosion degraded materials showed 35~50% of fatigue life at a same stress amplitude compared to original material. Because the catenary wires have variable load by the interaction of periodic contacts with pantographs the maximum stresses of trolley wire and messenger wire calculated by simulation at the messenger wire during operation was estimated thought the corrosion behavior interpretation of variable stress and fatigue test.

Life Prediction of Copper Alloy of Combustion Chamber (연소실 구리합금의 피로수명 예측)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.44-49
    • /
    • 2011
  • A study of the fatigue life of copper alloy which was used in inner jacket of regenerative cooling chamber of liquid rocket engine has been performed. Generally used life prediction methods -original universal slopes method, modified universal slopes method, Mitchell's method, B$\"{a}$umel and Seeger's method, and Ong's method- have been used for predicting the fatigue data. It was found that the novel life prediction method which was modified from Ong's method was suggested since almost all data have not been predicted well with the widely used methods. The suggested modified Ong's method predicted well within 3X scatterbands.

Fatigue Life Prediction for Multiple Surface Cracks in Finite Plates (복수표면균열을 갖는 구조요소의 피로수명 예측)

  • J.D. Kim;J.W. Lee;C.H. Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.75-86
    • /
    • 1996
  • A fatigue life prediction program for multiple planar surface cracks in finite plates and T-fillet joints, based on linear elastic fracture mechanics was developed. This prediction technique include the crack coalescence, mutual interation and the stress intensity concentration effect in welded joints. Total of 44 cases were compared with lida's and Vosikovsky's experimental results and it was found that the present method was a reasonable tool for the predictioin of fatigue life.

  • PDF

Life Prediction of Copper Alloy of Combustion Chamber (연소실 구리합금의 피로수명 예측)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.89-92
    • /
    • 2010
  • A study about the fatigue life of copper alloy which is used in inner jacket of regenerative cooling chamber of liquid rocket engine has been performed. Generally used life prediction methods-original universal slopes method, modified universal slopes method, Mitchell's method, Baumel and Seeger's method, and Ong's method-have been used for predicting the fatigue data. It was found that the novel life prediction method which is modified from Ong's method was suggested since almost all data have not been predicted well with the widely used methods. The suggested modified Ong's method predicted well within 3X scatterbands.

  • PDF

Modeling of wind-induced fatigue of cold-formed steel sheet panels

  • Rosario-Galanes, Osvaldo;Godoy, Luis A.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.237-259
    • /
    • 2014
  • Wind-induced failure around screwed connections has been documented in roof and wall cladding systems made with steel sheet cold-formed panels during high wind events. Previous research has found that low cycle fatigue caused by stress concentration and fluctuating wind loads is responsible for most such failures. A dynamic load protocol was employed in this work to represent fatigue under wind effects. A finite element model and fatigue criteria were implemented and compared with laboratory experiments in order to predict the fatigue failure associated with fluctuating wind loads. Results are used to develop an analytical model which can be employed for the fatigue analysis of steel cold-formed cladding systems. Existing three dimensional fatigue criteria are implemented and correlated with fatigue damage observed on steel claddings. Parametric studies are used to formulate suitable yet simple fatigue criteria. Fatigue failure is predicted in different configurations of loads, types of connections, and thicknesses of steel folded plate cladding. The analytical model, which correlated with experimental results reported in a companion paper, was validated for the fatigue life prediction and failure mechanism of different connection types and thicknesses of cold-formed steel cladding.