• Title/Summary/Keyword: fatigue phenomenon

Search Result 192, Processing Time 0.026 seconds

Retardation of Fatigue Crack Propagation by Single Overloading (단일과대하중에 의한 피로균열전파의 지연거동)

  • 김상철;함경춘;강동명
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.1
    • /
    • pp.20-29
    • /
    • 1992
  • Effects of strain hardening exponents on the retardation behavior of fatigue crack propagation are experimentally investigated. The retardation of fatigue crack propagation seems to be induced by the crack closure at crack tip. The phenomenon of crack closure becomes remarkable with the increment of strain hardening exponent and magnitude of percent peak load. The ratio of crack growth increment(a$\_$d//w$\_$d/) is influenced by a single overloading (a$\_$d/) and estimated plastic zone size (W$\_$d/=2r$\_$y/) is increased according with the increasing of strain ha.dening exponents. The number of retarded crack growth cycles were (N$\_$d/) decreased as the baseline stress intensity factor .ange( K$\_$b/) was increased. Within the limitation of these experimental results obtained under the single overload, an empirical relation between crack retardation ratio (Nd/N*), strain hardening exponent (n) and percent peak load (%PL) has been proposed as; Nd/N*= exp [PL $.$ PL$.$A(n)+B(n) ] where, A(n)=${\alpha}$n+${\beta}$, B(n)=${\gamma}$n+$\delta$, PL=%PL/100 and ${\alpha}$=0.78, ${\beta}$=0.54, ${\gamma}$=0.58 and $\delta$=-0.01, It is interesting to note that all these constants are identical for materials such as aluminum(A3203), steel(S4SC), steel(SS41) and stainless steel(SUS316) used in this experimental study.

  • PDF

A Quantitative Estimation of Welding Residual Stress Relaxation for Fatigue Strength Analysis (피로강도해석을 위한 용접잔류응력 이완의 정량적 평가)

  • Han, Seung-Ho;Lee, Tak-Kee;Shin, Byung-Chun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2018-2025
    • /
    • 2002
  • It is well known that the strength and the fatigue life of welded steel components are affected extensively by welding residual stresses distributed around their weldments under not only monotonic but also cyclic loads. The externally applied loads are to be superimposed with the welding residual stresses, so that unexpected deformations and failures of the components might occur. These residual stresses are not kept constant, but relaxed or redistributed during in service. Under monotonic loads the relaxation takes place when the sum of external and welding residual stress exceeds locally the yield stress of material used. By the way, it is shown that under cyclic loads the welding residual stress is considerably relieved by the first or the early cycles of loads, and then gradually relaxed with increasing loading cycles. Although many investigations in this field have been carried out, the phenomenon and mechanism of the stress relaxation are still not clear, and there are few comprehensive models to predict amount of relaxed welding residual stress. In this study, the characteristics of the welding residual stress relaxation under monotonic and cyclic loads were investigated, and a model to predict quantitatively amount of welding residual stress relaxation was proposed.

Design methodology in transverse webs of the torsional box structure in an ultra large container ship

  • Silva-Campillo, Arturo;Suarez-Bermejo, J.C.;Herreros-Sierra, M.A.;de Vicente, M.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.772-785
    • /
    • 2021
  • Container ships has a transverse section in the form of an open profile, making it very sensitive to torsion phenomena. To minimize this effect, a structure known as a torsion box exists, which is subject to high stresses influenced by the fatigue phenomenon and the existence of cut-outs, for the passage of the longitudinal stiffeners, acting as stress concentrators. The aim of this study is to propose a two-stage design methodology to aid designers in satisfying the structural requirements and contribute with to a better understanding of the considered structure. The transverse webs of a torsional box structure are examined by comparing different cut-out geometries from numerical models with different regular load conditions to obtain the variables of the fatigue safety factor through linear regression models. The most appropriate geometry of the torsion box is established in terms of minimum weight, from nonlinear multivariable optimization models.

A Study on the Improvement of Crack Propagation in Wing Root Fairing Support by Pre-load in Military Aircraft Production Process (군용항공기 생산공정에서 발생하는 예하중에 의한 주익 루트 페어링 지지대 균열개선 연구)

  • Shin, Jae Hyuk;Jeong, Su-Heon;Kang, Gu-Heon;Lee, Heon Sub
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.38-44
    • /
    • 2018
  • Military aircraft may have fatigue cracks in structurally weak areas due to multiple factors such as the accumulation of flight time while perform various missions and unpredictable air conditions. As a fatigue crack progresses, there is a risk that the structure will be destroyed in extreme cases, which can have a significant impact on flight safety. In this study, a cracking phenomenon was observed during the periodic inspection the inner support of the fairing, which is installed to protect the connection between the wing and the body of the aircraft. Therefore, a study on a series of quality improvement processes for reformation was described. In order to identify the causes of cracks, pre-load generation occurrence during the wing assembly process was investigated and a fracture analysis was performed. Also, the design of the support structure was suggested in terms of preventing recurrence of cracks. The structural integrity was verified using a stress and fatigue life analysis.

Experimental Investigations on the Fatigue Strength of the Submarine Pressure Hull (잠수함 압력선체의 피로강도에 대한 실험적 연구)

  • Kim, Uln-Yeon;Kim, Kuk-Bin;Jeon, Jae-Hwang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.67-75
    • /
    • 2010
  • Submarine and deep sea diving structures are generally designed based on their ultimate strength. Fatigue strength at welded joint must be also taken into account because working stress is increased due to the increasing of diving depth and using high yield steel. The pressure hulls of submarine are subjected to fluctuating compressive loading. But in addition to the calculated stresses, high residual tensile stresses at welded part have to be considered. The state of stress level of pressure hull is tensile at surface and compressive at deep diving depth. This paper presents the results of an experimental investigation on the crack initiation and growth at the weld toe of T welded joints of HY-100 steel plate under constant amplitude loading. It is also investigated the phenomenon of the fatigue failure and test methods. Fatigue tests have been using real scaled local structural models of full penetration T-welded joint, which is a part of the cylindrical shell structures reinforced by ring stiffeners. Several load ratios under constant amplitude loading are considered in the tests. Crack initiation and growth characteristics are examined based on the beach marks of the cracked section of the test specimens. A design stress-life curve including the design formula is suggested according to tested data.

Fatigue Evaluation of District Heat Pipes based on the Measured Data (실데이터 분석을 통한 지역난방 열배관의 피로안전성 평가)

  • Park, Jin-Eun;Kyung, Kab-Soo;An, Yong-Mo;Kwon, Soon-Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.569-579
    • /
    • 2011
  • Heating pipes, which are among the main equipment in district heating systems, can be classified into supply and return pipes. Because when the district heating transmission pipe, which is charged with district heating in small to medium-size cities, is under thermal stress during temperature variances in heating water, it suffers from the fatigue phenomenon caused by the thermal stress, according to the number of its service years. District heatingpipes have shown various characteristics according to the operating condition of the service connections, and the irregular temperature variance has had a bad influence on fatigue heating pipes. Therefore, in this study, a field test on laid heating pipes was performed, and the data for each region were analyzed. Also, the fatigue safety of district heating pipes was evaluated via cycle-based evaluation and stress-based evaluation.

Sloshing Analysis of a Simple Tank using Fluid-structure Interface Method (유체-구조 연성 방법에 의한 단순 탱크 슬로싱 해석)

  • Kang, Sung-Jong;Seo, Hong-Jae;Kim, Byung-Joo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.31-37
    • /
    • 2011
  • Fuel tank sloshing noise of vehicle is caused by flow impact on the tank wall during sudden braking, and the sloshing vibration of tank wall is a coupled phenomenon of the fuel inside tank and tank wall structure. Therefore, Fluid-Structure Interface(FSI) analysis technology should be adopted to predict accurately the sloshing vibration. In this study, FSI approach was employed to analyze sloshing phenomenon for a simple tank model with velocity change of the actual vehicle test. First, the simulated results for rigid tank model were compared with those for deformable tank model. Next, influence of baffle location and shape of baffle holes on the acceleration magnitude and the maximum stress of tank wall was investigated. In addition, sloshing analysis for tank with another baffle type was carried out.

A Concept Analysis of Hardiness (강인성 (Hardiness)의 개념 분석)

  • 이영애
    • Journal of Korean Academy of Nursing
    • /
    • v.24 no.4
    • /
    • pp.616-622
    • /
    • 1994
  • Precise concept analysis has been neglected be-cause of a lack of understanding of its necessity and a lack of conceptual analytic knowledge. Concept analysis is the mental work of examining parts, phenomenon and the interrelated whole of a thing. Focus in this article is to extract the critical attributes of hardiness and make an operational delinition. The process of concept analysis is illustrated and documented using the analytic approach described by Walker and Avant (1983). To explore the explicit or implicit meanings of hardiness, existing literature was reviewed. The evolution of hardiness and the dictionary definitions were also added. Hardiness can be defined as follows : A condition of being inured to fatigue or hardship which has three subcomponents-challenge, control and commitment. Critical attributes of hardiness were extracted that may be used in naming the occurrence of the phenomenon. Model case, contrary case, borderline case and related case were described. Antecedents and consequences were explored. The defining critical attributes of hardiness are : 1. Resistance-hardiness involves resistance of stress or hardship. 2. Hardiness involves appraisal of change as a chance. 3. Hardiness implies interpretation of events and self as influential,. 4. Hardiness requires active involving reaction Implications for nursing and for further study are added.

  • PDF

Numerical Analysis of Thermal Stratification due to Turbulence Penetration into Leaking Flow in a T Branch (사각 T분기관내 누설유동의 난류침투에 의한 열성층 발생에 관한 수시해석적 연구)

  • Hong, Seok-Woo;Choi, Young-Don;Park, Min-Su;Seo, Jung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.729-734
    • /
    • 2001
  • Thermal stratification due to turbulence penetration and in-leakage of valve cause the large thermal stress, which lead to fatigue crack of the piping system of nuclear power plant. So it is needed that numerical and experimental study for the phenomenon is conducted because there have not yet been sufficient study for the relationship between turbulence penetration and thermal stratification. Therefore numerical analysis is done here and respected to give a fundamental method of the approach to the phenomenon.

  • PDF

A Parametric Study on Bulkhead Plate of Orthotropic Steel Deck Bridge (강바닥판교의 벌크헤드 플레이트에 관한 매개변수 연구)

  • 공병승;김진만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.333-339
    • /
    • 2003
  • Recently, the bridges become greater according to development of a construction technology. This phenomenon requires long span bridge, so that increases the dead weight. The orthotropic steel deck bridges have much advantages such as the light dead weight and the reduction of construction period. And almost whole process of carried out is manufactured at factory, so it can cause the increase of quality authoritativeness. But orthotropic steel deck bridge is consist of structure by welding, it can not avoid a lot of welding jobs, defects and transformation by welding are becoming problem accordingly. Specially, topical stress concentration phenomenon in cross connection area of longitudinal and transverse rib causes fatigue failure. The Bulkhead Plate for prevention of this stress concentration phenomenon was applied by changing the orthotropic steel deck of Williamsburg bridge in USA. But, it is principle that a Bulkhead Plate is not established in the domestic design standard. Therefore, it is estimated that the study for installation of Bulkhead Plate is needed. This treatise with considering these circumstances proves efficiency of Bulkhead Plate and will be presented optimal design details through finite element analysis according to change the geometrical of Bulkhead Plate and tile cross-connection area of longitudinal and transverse rib.

  • PDF