• Title/Summary/Keyword: fatigue phenomenon

Search Result 192, Processing Time 0.035 seconds

Full-scale investigation of wind-induced vibrations of a mast-arm traffic signal structure

  • Riedman, Michelle;Sinh, Hung Nguyen;Letchford, Christopher;O'Rourke, Michael
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.405-422
    • /
    • 2015
  • In previous model- and full-scale studies, high-amplitude vertical vibrations of mast-arm traffic signal structures have been shown to be due to vortex shedding, a phenomenon in which alternatingly shed, low-pressure vortices induce oscillating forces onto the mast-arm causing a cross-wind response. When the frequency of vortices being shed from the mast-arm corresponds to the natural frequency of the structure, a resonant condition is created causing long-lasting, high-amplitude vibrations which may lead to the fatigue failure of these structures. Turbulence in the approach flow is known to affect the cohesiveness of vortex shedding. Results from this full-scale investigation indicate that the surrounding terrain conditions, which affect the turbulence intensity of the wind, greatly influence the likelihood of occurrence of long-lasting, high-amplitude vibrations and also impact whether reduced service life due to fatigue is likely to be of concern.

Differential Diagnosis of Dysphonia Looks Normal Larynx (정상으로 보이는 후두에서 음성변화의 감별진단)

  • Son, Ho Jin;Choi, Seung Ho
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.27 no.2
    • /
    • pp.91-94
    • /
    • 2016
  • Voice is a physical phenomenon, generated by vocal fold and expiratory airflow. Dysphonia should come from abnormal vocal fold and airflow. Occassionally larynx looks normal in show, but it is actually not. There should be undetected structural or functional abnormalities. So when ENT doctors face dysphonia patients who looks normal larynx, should make a diagnosis through close observation. In this review article we present some dysphonia diseases which looks normal larynx. For example vocal fatigue, vocal fold paresis, posterior glottic diastasis, muscle tension dysphonia and psychogenic dysphonia.

  • PDF

Fracture Mechanic's Approach on Retardation Behaviors under Overloading (과대하중작용 시 균열성장 지연거동에 대한 파괴역학적 정리)

  • Kang, Yong-Goo;Park, Jun-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.82-89
    • /
    • 2012
  • In order to clarify the effect of overload on crack growth behaviors, fatigue tests for overload were carried out for round plain specimens of SM45C steel. In the experiment, typical semi-elliptical crack shape was found and further crack growth behaviors were tested. Using three types of single overload fatigue tests, Crack growth retardation phenomenon were examined. The growth rate of surface crack(da/dN) during retardation period was analyzed in terms of ${\Delta}K$ and ${\Delta}K_{eff}$. On the growth rate of surface crack analyzed by ${\Delta}K$, the dependence of overload stress levels appears. However, on the growth rate by ${\Delta}K_{eff}$ obtained by Willenborg analysis, there is a liner relationship between da/dN and ${\Delta}K_{eff}$ with narrow scatter band.

A Study of Two-Mode Failure Model for Crystalline Si Photovoltaic Module (실리콘 태양전지 모듈의 two-mode failure 모델의 연구)

  • Choi, Ki Young;Oh, Won Wook;Kang, Byung Jun;Kim, Young Do;Tark, Sung Ju;Kim, Donghwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.62.2-62.2
    • /
    • 2011
  • To guarantee 20-25 years to the lifetime of the PV modules without failure, reliability test of the module is very important. Field-aged test of the outdoor environment is required. However, due to time constraints, accelerated testing is required to predict the lifetime of PV modules and find causes of failure. Failure is caused by many complex phenomena. In this study, we experimented two accelerated tests about corrosion and fatigue, respectively. First, temperature cycling test for fatigue were tested and Coffin-Manson equation was analyzed. Second, damp heat test for corrosion were tested and Eyring equation were analyzed. Finally, using two-mode failure model, we suggest a new lifetime model that analyze the phenomenon by combining two kinds of data.

  • PDF

A Study on Fatigue Crack Growth Behavior and R-Curve Characteristics of Gas Piping Material (가스배관재의 피로균열진전거동과 파괴저항특성곡선에 관한 연구)

  • Son, J.D.;Lim, M.B.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.127-133
    • /
    • 2007
  • SG-365 steel is an important material and used for manufacturing a pressure vessel which the gas piping. In this investigation, the elastic plastic fracture toughness of this material is evaluated by the unloading compliance method according to the ASTM E813-97 and E1152-97 method on the smooth and side groove 1CT specimens. The effect of smooth and side groove is studied on the elastic plastic fracture toughness. The side grooved specimen is very useful in estimation of the $J_{IC}$. It is much easier than the smooth specimen to the onset of the ductile tearing by the R curve method. Besides, it improves the accuracy of toughness values, decreases a phenomenon of the tunneling and shear lip by the side groove.

  • PDF

Numerical study on CMT boron replenishment strategy for an AP1000 nuclear power unit

  • Wang, Hong;Zhang, Miao;Li, Jialong;Wang, Junpeng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2321-2328
    • /
    • 2022
  • The passive safety system is adopted in an AP1000 nuclear power unit to improve the operation safety of the whole unit. However, due to boron diffusion and periodic sampling, boron dilution occurs in the core makeup tank. The boron replenishment process in the core makeup tank is essential and becomes particularly important. Based on the validated models, this article numerically investigates the influence of the replenishment flow rate and the position on the boron distribution in the core makeup tank. The thermal fatigue phenomenon of the "T" connection caused by replenishment is analyzed. Finally, the replenishment strategy is proposed to benefit both boron mixing in the core makeup tank and eliminating the thermal fatigue of the "T" connection.

UNSM Surface Technology for Manufacturing and Remanufacturing Torsion Bars for Crawler Vehicles (초음파 나노표면개질을 적용한 궤도차량용 토션바 제조 및 재제조용 표면 개질기술에 관한 연구)

  • Suh, Chang-Min;Pyoun, Young-Sik;Cho, In-Ho;Baek, Un-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.80-85
    • /
    • 2011
  • The Ultrasonic Nanocrystal Surface Modification (UNSM) technology improves the fatigue life of a torsion bar by inducing compressive residual stress on the surface layer. The UNSM is applied to replace the presetting method and shot peening technology. The torsion bar must be changed periodically because of a lack of durability and a phenomenon related to the stress relaxation. The torsion fatigue test specimens were made of DIN17221 material, and the results showed that the fatigue life was 5 times more than under durability test conditions. A comparison test between the commercial vehicles' presetting method and shot peened torsion bar and the UNSM torsion bar showed that the UNSM could replace the presetting method and shot peening.

Thermo-mechanical Reliability Analysis of Copper TSV (구리 TSV의 열기계적 신뢰성해석)

  • Choa, Sung-Hoon;Song, Cha-Gyu
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.46-51
    • /
    • 2011
  • TSV technology raises several reliability concerns particularly caused by thermally induced stress. In traditional package, the thermo-mechanical failure mostly occurs as a result of the damage in the solder joint. In TSV technology, however, the driving failure may be TSV interconnects. In this study, the thermomechanical reliability of TSV technology is investigated using finite element method. Thermal stress and thermal fatigue phenomenon caused by repetitive temperature cycling are analyzed, and possible failure locations are discussed. In particular, the effects of via size, via pitch and bonding pad on thermo-mechanical reliability are investigated. The plastic strain generally increases with via size increases. Therefore, expected thermal fatigue life also increase as the via size decreases. However, the small via shows the higher von Mises stress. This means that smaller vias are not always safe despite their longer life expectancy. Therefore careful design consideration of via size and pitch is required for reliability improvement. Also the bonding pad design is important for enhancing the reliability of TSV structure.

Experiments on the Thermal Stratification in the Branch of NPP

  • Kim Sang Nyung;Hwang Seon Hong;Yoon Ki Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1206-1215
    • /
    • 2005
  • The thermal stratification phenomena, frequently occurring in the component of nuclear power plant system such as pressurizer surge line, steam generator inlet nozzle, safety injection system (SIS), and chemical and volume control system (CVCS), can cause through-wall cracks, thermal fatigue, unexpected piping displacement and dislocation, and pipe support damage. The phenomenon is one of the unaccounted load in the design stage. However, the load have been found to be serious as nuclear power plant operation experience accumulates. In particular, the thermal stratification by the turbulent penetration or valve leak in the SIS and SCS pipe line can lead these safety systems to failure by the thermal fatigue. Therefore in this study an 1/10 scaledowned experimental rig had been designed and installed. And a series of experimental works had been executed to measure the temperature distribution (thermal stratification) in these systems by the turbulent penetration, valve leak, and heat transfer through valve. The results provide very valuable informations such as turbulent penetration depth, the possibility of thermal stratification by the heat transfer through valve, etc. Also the results are expected to be useful to understand the thermal stratification in these systems, establish the thermal strati­fication criteria and validate the calculation results by CFD Codes such as Fluent, Phenix, CFX.

Effects of Bottom Electrode to Dielectric and Electrical Properties of MOD Derived Ferroelectric SBT Thin Films (MOD 법으로 제조한 강유전성 SBT 박막에서 하부전극이 유전 및 전기적 특성에 미치는 영향)

  • 김태훈;송석표;김병호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.8
    • /
    • pp.694-699
    • /
    • 2000
  • S $r_{0.9}$/B $i_{2.1}$/T $a_{2}$/ $O_{9}$ solutions was synthesized by MOD (metalorganic decomposition) method. SBT thin films with 2000$\AA$ thickness were prepared on Ir $O_2$/ $SiO_2$/Si and Pt/Ti/ $SiO_2$/Si substrates using the spin coating process and then investigated the dielectric and electrical properties of them. In the case of using Ir $O_2$bottom electrode the hysteresis loop was saturated at lower temperature than Pt/Ti electrode but the breakdown phenomenon was occurred at low voltage because of the rough surface morphology and porous microstructure of SBT thin films. As the results of the fatigue and imprint characteristics related to the lifetime and reliability of devices after 10$^{10}$ cycles the fatigue rates were about 10% at the Ir $O_2$and Pt/Ti bottom electrodes. Both SBT thin films with Ir $O_2$ and with Pt/Ti bottom electrodes show a slight tendency to imprint after 10$^{9}$ cycles but do not lead to a failure.e.e.

  • PDF