• Title/Summary/Keyword: fatigue limit

Search Result 455, Processing Time 0.027 seconds

A Study on Performance of Protective Gloves to Isocyanate Toxicity (이소시안화물 독성에 대한 보호장갑의 성능 연구)

  • Lee, Su-Gil;Pisaniello, Dino;Lee, Nae-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.62-69
    • /
    • 2008
  • As the concerns of dermal exposure of spray painters to isocyanates in the automobile industry, glove performance was examined like permeation rate and breakthrough time including fatigue test. Methylene chloride was used as the solvent for derivatization of the isocyanates with a 97.5% recovery. Ghost wipe pads were used to wipe the surface of the glove material after chemical penetration through the glove material placed under a disposable test cell. Several solvents were tested, such as thinner(xylene, toluene) and cleaning agent(acetone) by using a standard permeation test cell(AS/NZS standard 2161. part 10.3). Solvents accelerate chemical permeation through the gloves more quickly than pure HDI hardener products. The longest breakthrough times were from Nitrosolve gloves, not detected in 8 hours, compared with others like Latex, Neoprene, TNT and Dermo Plus. Therefore Nitrosolve gloves could be recommended as personal protective equipment in crash repair shops. In addition, revised exposure limit of korean regulation should be suggested for employee to minimize the risk of health symptoms.

A Experimental Study on Strength Safety of Rail Steel using Gas Pressure Welding (레일 가스압접부의 강도 안전성에 관한 실험적 연구)

  • Kim, Kyung-Seob
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.266-271
    • /
    • 2012
  • This study was carried out for the purpose of improving driving safety and comfort of the railways quickly becoming popular. To conducted gas pressure welding to ensure the strength safety of continuous welded rail and rotating bending test tensile test was conducted. The element to determine the tensile strength of gas pressure welds at experiments be attributed to more upsetting length than pressure, according to increases of upsetting length, from brittle fracture to ductile fracture was observed. Through the biopsy of the fracture surface, according to the presence of brittle fracture could be evaluated to strength safety. In addition, mechanical strength of gas pressure welding depending on changes in upsetting length was different. Rotary bending test results were obtained to the infinite life according to exhibited higher fatigue limit of 373MPa at upsetting length 25mm.

Application of a Dynamic-Nanoindentation Method to Analyze the Local Structure of an Fe-18 at.% Gd Cast Alloy

  • Choi, Yong;Baik, Youl;Moon, Byung M.;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.576-580
    • /
    • 2017
  • A dynamic nanoindentation method was applied to study an Fe-18 at.% Gd alloy as a neutron-absorbing material prepared by vacuum arc-melting and cast in a mold. The Fe-18 at.% Gd cast alloy had a microstructure with matrix phases and an Fe-rich primary dendrite of $Fe_9Gd$. Rietveld refinement of the X-ray spectra showed that the Fe-18 at.% Gd cast alloy consisted of 35.84 at.% $Fe_3Gd$, 6.58 at.% $Fe_5Gd$, 16.22 at.% $Fe_9Gd$, 1.87 at.% $Fe_2Gd$, and 39.49 at.% ${\beta}-Fe_{17}Gd_2$. The average nanohardness of the primary dendrite phase and the matrix phases were 8.7 GPa and 9.3 GPa, respectively. The fatigue limit of the matrix phase was approximately 37% higher than that of the primary dendrite phase. The dynamic nanoindentation method is useful for identifying local phases and for analyzing local mechanical properties.

Strain-based Damage Evaluation of Specimens under Large Seismic Loads (대형 지진하중에 대한 시편의 변형률기반 손상평가)

  • Kweon, Hyeong Do;Heo, Eun Ju;Lee, Jong Min;Kim, Jin Weon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.24-31
    • /
    • 2018
  • In this paper, specimen tests with simulated large seismic conditions have been carried out to investigate damage characteristics such as structural deformation and crack initiation under seismic loading. The mechanical behavior of the specimens is predicted by numerical simulations and the strain-based damage evaluations are performed. Finite element analyses of the specimens under the simulated seismic loading at room and operating temperatures were carried out for low alloy steel and stainless steel materials. Peak strain amplitude, cumulative fatigue damage and cumulative strain limit damage are calculated considering the nature of cyclic loading. In all cases, the allowable damage criteria are exceeded at the time of observing cracks visually in the tests. Therefore, it is confirmed that the material behavior due to the large seismic loads can be predicted by the numerical method and the structural damage of the materials can be evaluated conservatively based on the strain criteria.

Evaluation of Harmless Crack Size according to Residual Stress Depth of Induction Hardened SCM440 Steel (유도경화한 SCM440 강의 잔류응력 깊이에 따르는 무해화 균열 크기 평가 )

  • Jong-Kyu Park;Ki-Hang Shin;Byoung-Chul Choi;In-Duck Park;Ki-Woo, Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.571-576
    • /
    • 2023
  • In this study, the harmless crack size(ahml) according to the residual stress depth was evaluated using the fatigue limit of SCM440 steel by quenching-tempering(QT) and induction hardening(IH), and threshold stress intensity factor of QT steel. Because the residual stress increased rapidly as the crack depth increased, ahml was determined at the depth of all the crack aspect ratio(As) regardless of Type I-III, and ahml also increased according to the residual stress depth. ahml was minimal at As=1.0 and maximal at As=0.1, but was almost similar on each Type. ahml was small the dependence on As.

Consideration of the Structural Response of High Speed Aluminum Planning Boat Stiffened Plate Member subjected to the Simplified Equivalent Dynamic Design Pressure (동하중 등가 설계압을 받는 고속 경구조선 알루미늄 보강판부재의 구조응답 고찰)

  • HAM JUH-HYEOK;KANG BYUNG-YOON;CHOO KYUNG-HOON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.408-413
    • /
    • 2004
  • High speed planning boats also have been required more and more the rational strength analysis and evaluation for the optimal structural design in respect of the structural lightness according to the high speed trend. Even though the suggestion of the simple type equation for the equivalent dynamic pressure is reasonable to design the scantling of ship structure conveniently, many research activities for more reasonable improvement of the simple design pressure, have been continued to suggest the more accurate equivalent static description of tire structural response such as the deflection and stress of hull structure. In this research, we focus on the aluminum bottom stiffened plate structure in which structural scantling is mainly depend on the local loads such as dynamic or impact pressure without other load effects and structural response for the simple dynamic equivalent pressure was investigated through the structural analysis. In order to investigate the structural response of the bottom stiffened plate structure subjected to the dynamic equivalent design pressure, linear and nonlinear structural analysis of the bottom stiffened plate structure of 4.3 ton aluminum planning boat was performed based on the equivalent static applied loads which were derived from the KR regulation and representative one among various dynamic equivalent pressure equations. From above analysis results, we found that the response such as deflection and stress of plate member was similar with the response results of one plate member model with fixed boundary, which was published previous paper and in case of KR design loading, all response of stiffened plate structure were within elastic limit. Through the nonlinear analysis, nearly elastic behavior including the slight geometrical nonlinear response was dominant but plastic local zone was appeared at $85\%$ limit load. Therefore, we can say that through tire linear and nonlinear analysis, this stiffened plate member has no structural strength problem based on the yield criteria in case within $60\%$ limit load except the other strength point of view such as the fatigue and buckling problem.

  • PDF

Numerical Study on the Strength Safety of High Pressure Gas Cylinder (고압가스 압력용기의 강도안전성에 관한 수치해석적 연구)

  • Kim, Chung-Kyun;Kim, Seung-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.1-6
    • /
    • 2010
  • The strength safety of high pressure gas cylinder has been analyzed by using a finite element method. In this study, the internal gas pressures of a steel bombe include a service charging pressure of $9kg/cm^2$, high limit charging pressure of $18.6kg/cm^2$, high limit of safety valve operation pressure $24.5kg/cm^2$, and hydraulic testing pressure of $34.5kg/cm^2$. The computed FEM results indicate that the strength safety for a service charging pressure of $9kg/cm^2$ and high limit charging pressure of $18.6kg/cm^2$ is safe because the stress of a gas cylinder is within yield strength of steel. But the stress for a hydraulic testing pressure of $34.5kg/cm^2$ sufficiently exceeds the yield strength and remains under the tensile strength. If the hydraulic testing pressures frequently apply to the gas cylinder, the bombe may be fractured because a fatigue residual stress is accumulated on the lower round end plate due to a plastic deformation. The computed results show that the concentrated force in which is applied on a skirt zone does not affect to the lower round end plate, and the most weak zone of a bombe is a middle part of a lower round end plate between a bombe body and a skirt for a gas pressure. Thus, the FEM results show that the profile of a lower round end plate is an important design parameter of a high pressure gas cylinder.

Occupational Heat Stress Impacts on Health and Productivity in a Steel Industry in Southern India

  • Krishnamurthy, Manikandan;Ramalingam, Paramesh;Perumal, Kumaravel;Kamalakannan, Latha Perumal;Chinnadurai, Jeremiah;Shanmugam, Rekha;Srinivasan, Krishnan;Venugopal, Vidhya
    • Safety and Health at Work
    • /
    • v.8 no.1
    • /
    • pp.99-104
    • /
    • 2017
  • Background: Workers laboring in steel industries in tropical settings with high ambient temperatures are subjected to thermally stressful environments that can create well-known risks of heat-related illnesses and limit workers' productivity. Methods: A cross-sectional study undertaken in a steel industry in a city nicknamed "Steel City" in Southern India assessed thermal stress by wet bulb globe temperature (WBGT) and level of dehydration from urine color and urine specific gravity. A structured questionnaire captured self-reported heat-related health symptoms of workers. Results: Some 90% WBGT measurements were higher than recommended threshold limit values ($27.2-41.7^{\circ}C$) for heavy and moderate workloads and radiational heat from processes were very high in blooming-mill/coke-oven ($67.6^{\circ}C$ globe temperature). Widespread heat-related health concerns were prevalent among workers, including excessive sweating, fatigue, and tiredness reported by 50% workers. Productivity loss was significantly reported high in workers with direct heat exposures compared to those with indirect heat exposures ($x^2=26.1258$, degrees of freedom = 1, p < 0.001). Change in urine color was 7.4 times higher among workers exposed to WBGTs above threshold limit values (TLVs). Conclusion: Preliminary evidence shows that high heat exposures and heavy workload adversely affect the workers' health and reduce their work capacities. Health and productivity risks in developing tropical country work settings can be further aggravated by the predicted temperature rise due to climate change, without appropriate interventions. Apart from industries enhancing welfare facilities and designing control interventions, further physiological studies with a seasonal approach and interventional studies are needed to strengthen evidence for developing comprehensive policies to protect workers employed in high heat industries.

Study on the Exposure Levels of Organic Solvents and Subjective Symptoms of Dry-cleaning Workers (드라이클리닝 근로자들의 유기용제 폭로와 자각증상)

  • Kim, Soo-Young;Kim, Jeong-Yun;Lee, Yeon-Kyeng;Lee, Sok-Goo;Lee, Young-Soo;Cho, Young-Chae;Lee, Tae-Young;Lee, Dong-Bae
    • Journal of Preventive Medicine and Public Health
    • /
    • v.31 no.4 s.63
    • /
    • pp.628-643
    • /
    • 1998
  • To investigate the exposure levels of organic solvents and subjective symptoms of dry-cleaning workers, 77 male and 52 female dry-cleaning workers who had been worked in a small city of Chungnam province, and a large city, Taejon were selected for the study group. Air concentrations of organic solvents in the working environment were analyzed, and subjective symptoms of dry-cleaning workers were surveyed, from July to August 1996. The results obtained were as follows : 1. The concentrations of organic solvents in the working environment were within permissible TLV-TWA limits. 2. For the 13 symptom clusters, the most frequently complained symptom clusters were fatigue as 71.3%, and followed by depression and urinary disturbances as 53.5% and 51.9%. Other symptom clusters complained were below 50%. 3. Positive response rates of subjective symptoms were significantly higher in worker groups such as lived in a large city, female, higher education level, more frequently alcohol drinking, higher concentration of organic solvent in working environment, work in alone. 4. Workers who had used solvent B showed 2.3 point higher scores of subjective symptoms than those of solvent A. Of the subjective symptoms scores, amnesia and nervousness were higher in solvent B user group than solvent B user group. 5. As a result of factor analysis, 3 factors such as depression, urinary disturbance and neurologic disturbance were selected. 6. As a result of the logistic regression analysis, sex, the number of fellow workers, working time, region, job tenure, smoking, alcohol drinking, ventilating system, concentration of organic solvent in working environment and place of residence were selected for the related variables. For the conclusion, even though the concentrations of organic solvents in the working environments of dry-cleaning workers were within permissible limit of TLV-TWA, many dry-cleaning workers complained symptoms, such as fatigue, depression, urinary disturbances and so on. And the factors affecting to the symptoms of dry-cleaning workers were the number of fellow workers, work hours, region, job tenure, smoking and alcohol drinking.

  • PDF

Study on the Physical Characteristics of Water Supply Steel Pipe according to Temperature Change (수도용 강관의 온도변화에 따른 물리적 특성에 대한 연구)

  • Kim, Woo-young;Jang, Am
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.733-740
    • /
    • 2017
  • 'The facilities standards of water supply' issued by the Ministry of Environment in 2004 indicates that expansion joints cannot be used in welding water supply steel pipes. However, their reason is not clear and it is difficult to confirm the stability of the steel pipe for a water supply pipeline. The purpose of this study is to determine whether or not an expansion joint is necessary to improve the stability of water supply in steel pipe through a displacement analysis of the pipework. The test results are as follows. Firstly, it was found that expansion and contraction of the water supply steel pipe (D 2,400 mm) occur repeatedly in 4 cycles per year, and the maximum expansion and contraction amount of the pipe is 13.03 mm in 1.24 km pipelines. Secondly, the thermal stress caused by expansion and contraction of the steel pipe is $13.7{\sim}36.1kgf/cm^2$ according to the burial depth (0~4 m). The main comparison factors to determine the stability of the steel pipe (STWW 400) were the allowable tensile strength and the fatigue limit, which were computed to be $4,100kgf/cm^2$ and $1,840kgf/cm^2$, respectively. Finally, the thermal stress of the steel pipe is very small compared to the allowable tensile stress and fatigue stress. Therefore, thermal stress does not affect the stability of the steel pipe, although the expansion and contraction of the steel pipe occurs by temperature changes. In conclusion, the study demonstrated that expansion joints are not required in water supply steel pipelines.