• Title/Summary/Keyword: fatigue fracture

Search Result 1,091, Processing Time 0.029 seconds

Fatigue Life Evaluation of Butt-Welded Tubular Joints

  • Kim, Dong-Su;Nho, In-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.34-39
    • /
    • 2003
  • Recent deepwater offshore structures in the Gulf of Mexico utilize butt welded tubular joints. Application of a welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical, as the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimation of the fatigue behavior of these tubular members in the design stage is generally condrcted by using S-N curves, as specified in the codeds and standards. Applying the stress concentration factor of the welded structure to the S-N approach often results in a very conservative assessment, because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fatigue life analysis using fracture mechanics has been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. Still, there is inconsistency when designing tubular joints using a conventional S-N approach and when specifying weld flaw acceptance criteria using fracture mechanics approach. This study developed fatigue curves that are consistent with both the S-N approach and the fracture mechanics approach. Accounting for non-uniform stress distribution and threshold stress intensity factor were key parameters in relating both approaches. A series of S-N curves, generated from the fracture mechanics approach, were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02 ). The new curves for tubular joint agree very well with the experimental results. The comparison also indicated the degree of conservatism built into the API X design curve.

Fatigue Life Evaluation of Butt-Welded Tubular Joints

  • Kim, Dong-Sup;Nho, In-Sik
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.69-74
    • /
    • 2003
  • Recent deepwater offshore structures in the Gulf of Mexico utilize butt welded tubular joints. Application of a welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical, as the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimation of the fatigue behavior of these tubular members in the design stage is generally conducted by using S-N curves, as specified in the codes and standards. Applying the stress concentration factor of the welded structure to the S-N approach often results in a very conservative assessment, because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fatigue life analysis using fracture mechanics has been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. Still, there is inconsistency when designing tubular joints using a conventional S-N approach and when specifying weld flaw acceptance criteria using fracture mechanics approach. This study developed fatigue curves that are consistent with both the S-N approach and the fracture mechanics approach. Accounting for non-uniform stress distribution and threshold stress intensity factor were key parameters in relating both approaches. A series of S-N curves, generated from the fracture mechanics approach, were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02). The new curves for tubular joint agree very well with the experimental results. The comparison also indicated the degree of conservatism built into the API X design curve.

  • PDF

Effect of Crystallographic Orientation on Fracture Mechanism of Ni-Base Superalloy

  • Han, Chang-Suk;Lim, Sang-Yeon
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.630-635
    • /
    • 2015
  • The fatigue strength of a nickel-base superalloy was studied. Stress-controlled fatigue tests were carried out at $700^{\circ}C$ and 5 Hz using triangular wave forms. In this study, two kinds of testing procedures were adopted. One is the conventional tension-zero fatigue test(R = 0). The other was a procedure in which the maximum stress was held at 1000 MPa and the minimum stress was diverse from zero to 1000 MPa at 24 and $700^{\circ}C$. The results of the fatigue tests at $700^{\circ}C$ indicate that the fracture mechanism changed according to both the mean stress and the stress range. At a higher stress range, ${\gamma}^{\prime}$ precipitates are sheared by a/2<110> dislocation pairs coupled by APB. Therefore, in a large stress range, the deformation occurred by shearing of ${\gamma}^{\prime}$ by a/2<110> dislocations, which brought about crystallographic shear fracture. As the stress range was decreased, the fracture mode gradually changed from crystallographic shear fracture to gradual growth of fatigue cracks. At an intermediate stress range, as it became more difficult for a/2<110> dislocation pairs to shear ${\gamma}^{\prime}$ particles, cracks started to propagate in the matrix, avoiding the harder ${\gamma}^{\prime}$ particles. High mean stress induced creep deformation, that is, ${\gamma}^{\prime}$ particles were sheared by {111}<112> slip systems, which led to the formation of stacking faults in the precipitates. Thus, the change in fracture mechanism brought about the inversion of the S-N curves.

Shape Optimization of Structures with a Crack (균열이 있는 구조물의 형상 최적화)

  • 한석영;송시엽;백춘호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.298-303
    • /
    • 2001
  • Most of mechanical failures are caused by repeated loadings and therefore they are strongly related to fatigue. To avoid the failures caused by fatigue, determination of an optimal shape of a structure is one of the very important factors in the initial design stage. Shape optimization for a compact tension specimen in opening mode in fracture mechanics, was accomplished by the linear elastic fracture mechanics and the growth-strain method in this study. Also shape optimization for a cantilever beam in mixed mode was carried out by the same techniques. The linear elastic fracture mechanics was used to estimate stress intensity factors and fatigue lives. And the growth-strain method was used to optimize the shape of the initial shape of the specimens. From the results of the shape optimization, it was found that shapes of two types of specimens and a cantilever beam optimized by the growth-strain method prolong their fatigue lives very much. Therefore, it was verified that the growth-strain method is an appropriate technique for shape optimization of a structure having a crack.

  • PDF

Reinforcement for Fatigue Fracture of Welded Bogie Frames (용접형 대차 프레임의 피로강도 보강에 관한 연구)

  • Jang, Deuk-Yul;Jeon, Hyung-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.145-151
    • /
    • 2016
  • We consider the position and thickness of reinforcement with respect to fatigue fracture of welded bogie frames and propose an appropriate reinforcement method for many cases. The bogie frame is usually designed in accordance with JIS and KS, and operates under harsh load conditions: dynamic loads generated while driving, various loads during operation, and large load differences between loading and unloading. Consequently, fatigue failure often occurs throughout the bogie frame. We modelled the reinforcing method using ANSYS software and reviewed stress in the vicinity of common fatigue failure sites through computer simulation, optimizing the position and thickness of reinforcement.

A Study on the Corrosion Fatigue Characteristics of Ion-nitrided SCM4 Steel in Rotationg Bending (이온질화처리한 SCM4 강의 회전굽힘 부식피로 특성에 관한 연구)

  • Lee, Du-Yong;Woo, Chang-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.1
    • /
    • pp.75-84
    • /
    • 1989
  • This paper deals with the effect of $N_2$ and $H_2$gas mixture ratio and ion-nitriding time in the corrosion fatigue fracture behavior of ion-nitrided SCM4 steel with notch subject to rotary bending stress. The specimens were treated rapid water cooling after ion-nitriding at $500^{\circ}C$ Torr for 1 hour and 3 hours in gas mixtures of 80% $N_2$and 50% $N_2$. The fatigue limit and the fracture strength of corrosion fatigue depended on $N_2$gas quantity and ion-nitriding time. The ion-nitrided specimens showed about 88 .approx. 158% increase in the fracture strength of corrosion fatigue in $10^6$ cycles than non-nitrided specimens. The corrosion failure is due to corrosion pitting of the surface, and the propargation of cracks started at the surface into the core.

  • PDF

Shape Optimization of Structures in Opening Mode (열림 파괴양식에 대한 구조물의 형상 최적화)

  • 한석영;송시엽
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.141-149
    • /
    • 2002
  • Most of mechanical failures are caused by repeated loadings and therefore they are strongly related to fatigue. To avoid the failures caused by fatigue, determination of an optimal shape of a structure is one of the very important factors in the initial design stage. Shape optimization for three types of specimens, which are very typical ones in opening mode in fracture mechanics, was accomplished by the linear elastic fracture mechanics and the growth-strain method in this study. The linear elastic fracture mechanics was used to estimate stress intensity factors and fatigue lives. And the growth-strain method was used to optimize the shape of the initial shape of the specimens. From the results of the shape optimization, it was concluded that shapes of three types of specimens optimized by the growth-strain method prolong their fatigue lives very much.

Environmental Fatigue Crack Propagation Behavior of Aged Cast Stainless Steel (열화 주조 스테인리스강의 환경피로균열 진전 거동)

  • Jeong, Ill-Seok;Lee, Yong-Sung;Kim, Sang-Jai;Song, Taek-Ho;Cho, Sun-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.78-83
    • /
    • 2004
  • Environmental fatigue crack propagation of CF8M and CF8A steels used in the domestic PWR were investigated on the simulated PWR condition(Temperature: $316^{\circ}C$, Pressure: 15MPa). The test equipment for environmental fatigue(high temperature-high pressure loop, autoclave, load frame, measurement system) were designed. As-received and 60-year aged specimens were used in the test. To compare with environmental fatigue test, another test was performed in the air condition. The fracture surface of specimens were difficult to verify the fracture modes such as striation, intergranular crack and cleavage and so on. As the ferrite content of CF8M is increased, more particles covered fracture surface were peeled.

  • PDF

A Study on the X-Ray Fractography of Turbine Blade under Fatigue Load (피로하중을 받는 터빈 블레이드의 X선 프랙토그래픽에 관한 연구)

  • Hong, Soon-Hyeok;Lee, Dong-Woo;Cho, Seok-Swoo;Joo, Won-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.65-71
    • /
    • 2002
  • Turbine blade is subject to cyclic bending force by steam pressure. Stress analysis by fractography is already established technology as means far seeking cause of fracture and has been widely employed. In the X-ray frctography, plastic deformation and residual stress near the fracture surface can be determined and information of internal structure of material can be obtained. Therefore, to find a fracture mechanism of torsion-mounted blade in nuclear power plant, based on the information from the fracture surface obtained by fatigue test, the correlation of X-ray parameter and fracture mechanics parameter was determined and then the stress intensity factor to actual broken turbine blade was predicted.

Linear fracture envelopes for fatigue assessment of welds in bridges

  • Ghosh, A.;Oehlers, D.J.;Wahab, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.4
    • /
    • pp.347-364
    • /
    • 1996
  • Presently welded components are designed using S/N curves which predict only the fatigue life of the component. In order to ascertain the condition of the weld at any intermediate period of its life inspection is carried out. If cracks are detected in a weld fracture mechanics is used to find their remaining life. A procedure for assessment is developed here that can be used to verify the condition of a weld before inspection is carried out to detect cracks. This simple method has been developed using linear fracture envelopes by combining S/N curves with linear elastic fracture mechanics.