• Title/Summary/Keyword: fatigue design

Search Result 1,881, Processing Time 0.03 seconds

The Effects of Neurofeedback Training on Brain Function Quotient of Elderly with Long-term Care Insurance Service (뉴로피드백 훈련이 장기요양시설노인의 뇌기능지수에 미치는 효과)

  • Youn, Mee Kyung;Hyun, Kyung Sun;Park, Pyung Woon;Lee, Kuang Shim;Jeong, Dong Lye;Lee, Jung Eun
    • Journal of East-West Nursing Research
    • /
    • v.18 no.2
    • /
    • pp.111-119
    • /
    • 2012
  • Purpose: Recently, Neurofeedback training system that based on biofeedback of brain wave was introduced. This study was performed to identify the effects of the improvement of brain function by Neurofeedback training on elders(the 2nd or 3rd grade of long-term care insurance services). Methods: A quasi-experimental design using a nonequivalent control group, pre-post test was used. Total 11 elderly were enrolled in this study (experimental group 5, control group 6). The intervention was conducted 3 times a week for 30 minutes from January to June, 2012 (total 60 times). Chi-square test and Mann-Whitney U-test were used to analyze the data. Results: After the Neurofeedback intervention, attention quotient (AQ), anti-stress quotient (ASQ), emotion quotient (EQ) and brain quotient (BQ) of the experimental group were significantly better than those of the control group. Conclusion: The findings indicate that the Neurofeedback training program was effective in reducing fatigue by AQ, increasing the physical and mental stress resistance by ASQ, emotional balance by EQ and improving of total brain function by BQ. Therefore Neurofeedback training be used as an effective training intervention for the health of elderly in geriatric facility.

Analysis of Material Response Based on Chaboche Unified Viscoplastic Constitutive Equation; (CHABOCHE 통합 점소성 구성방정식을 이용한 재료거동해석)

  • Kwak, D.Y.;Im, Y.T.;Kim, J.B.;Lee, H.Y.;Yu, B.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3516-3524
    • /
    • 1996
  • Service conditions for structures at elevated temperatures in nuclear power plant involve transient thermal and mechanical load levels that are severe enough to caeuse inelastic deformations due to creep and plasticity. Therefore, a systematic mehtod of inelastic analysis is needed for the design of structural components in nuclear poser plants subjected to such loading conditions. In the present investigation, the Chabodhe model, one of the unified viscoplastic constitutive equations, was selected for systematic inelastic analysis. The material response was integrated based on GMR ( generallized mid-point rule) time integral scheme and provided to ABAQUS as a material subroutine, UMAT program. By comparing results obtaned from uniaxial analysis using the developed UMAT program with those from Runge-Kutta solutions and experimentaiton, the validity of the adopted Chaboche model and the numerical stability and accuracy of the developed UMAT program were verified. In addition, the developed material subroutine was applied for uniaxial creep and tension analyses for the plate with a hole in the center. The application further demonstrates usefulness of the developed program.

Improvement in Thermomechanical Reliability of Power Conversion Modules Using SiC Power Semiconductors: A Comparison of SiC and Si via FEM Simulation

  • Kim, Cheolgyu;Oh, Chulmin;Choi, Yunhwa;Jang, Kyung-Oun;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.21-30
    • /
    • 2018
  • Driven by the recent energy saving trend, conventional silicon based power conversion modules are being replaced by modules using silicon carbide. Previous papers have focused mainly on the electrical advantages of silicon carbide semiconductors that can be used to design switching devices with much lower losses than conventional silicon based devices. However, no systematic study of their thermomechanical reliability in power conversion modules using finite element method (FEM) simulation has been presented. In this paper, silicon and silicon carbide based power devices with three-phase switching were designed and compared from the viewpoint of thermomechanical reliability. The switching loss of power conversion module was measured by the switching loss evaluation system and measured switching loss data was used for the thermal FEM simulation. Temperature and stress/strain distributions were analyzed. Finally, a thermal fatigue simulation was conducted to analyze the creep phenomenon of the joining materials. It was shown that at the working frequency of 20 kHz, the maximum temperature and stress of the power conversion module with SiC chips were reduced by 56% and 47%, respectively, compared with Si chips. In addition, the creep equivalent strain of joining material in SiC chip was reduced by 53% after thermal cycle, compared with the joining material in Si chip.

A Study on the Characteristic of Stress Behavior of Topside Weldment Welded after Launching (진수후 데크 topside 용접부의 응력 거동 특성에 관한 연구)

  • Lee, Dong-Ju;Shin, Sang-Beom
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.58-58
    • /
    • 2010
  • The purpose of this study is to evaluate the structural safety at the topside weldment of hull structure, which was welded after launching. For it, the variations of residual stress and distortion at the topside weldment with loading conditions such as hull girder hogging bending moment after launching and free initial loading state was evaluated by using FEA. And the maximum stress range at the weldment under design loads specified by classification society was evaluated by FEA. In this case, the residual stress and welding distortion at the topside weldment was assumed to be initial imperfection. In accordance with FEA results, regardless of initial loading condition, tensile residual stress was found. However, the residual stress and welding distortion at the topside weldment produced under hogging condition was less than those of topside weldment under free loading state. That is, the amount of residual stress at the topside weldment decreased with an increase in the amount of tension load caused by hogging condition. It was because the compressive thermal strain at the topside weldment produced during welding was reduced by tensile load. However, the maximum stress range at the topside weldment under maximum hull girder bending moment was almost similar regardless of initial loading condition. So, if the problem related to the soundness of weldment is not introduced by initial load, the effect of initial loading condition during welding on fatigue strength of topside weldment could be negligible.

  • PDF

Design of Oceanography Buoy - Part II: Mooring System (해양관측용 부이의 설계 건전성 평가 - Part II: 계류시스템 구조건전성 평가)

  • Keum, Dong-Min;Kim, Tae-Woo;Han, Dae-Suk;Lee, Won-Boo;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.89-95
    • /
    • 2009
  • The purpose of the present study was to evaluate the safety under extreme environmental conditions and the dynamic safety under service environment conditions, of oceanographic buoy mooring systems consisting of a variety of materials, including chain, wire rope, nylon rope, and polypropylene rope. For the static safety assessment of a mooring system, after the calculation of external forces and the division of a mooring system into finite elements, the numerical integral was conducted to yield the elemental static tension until satisfying the geometrical convergence condition. To evaluate the dynamic safety, various processes were considered, including data collection about the anticipated areas for mooring, a determination of the parameters for the interpretation, the interpretation of the dynamic characteristics based on an analytic equation that takes into account the heave motion effect of a buoy hull and a mooring system, and a fatigue analysis of the linear cumulative damage. Based on the analysis results, a supplementary proposal for a wire rope that has a fracture in an actual mooring area was established.

Wearing Comfort Evaluation of a Summer Flight Suit to Improve Ventilation (통기성 향상을 위한 하계비행복 설계 및 착용쾌적성 평가)

  • Jeon, Eun-Jin;Park, Sei-Kwon;You, Hee-Cheon;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.16 no.3
    • /
    • pp.485-491
    • /
    • 2014
  • This study verified the effect of summer flight ventilation developed in a previous study based on wearing comfort evaluation. Seven healthy males in their twenties volunteered for this experiment conducted in aclimatic chamber. The experiment consisted of three consecutive periods of rest (20 minutes), running on a treadmill (10 minutes) and recovery (20 minutes). A comparative evaluation was conducted on the general flight suit which had no ventilation holes and summer flight suit that use subjective satisfaction measures and objective measures. The subjective satisfaction was evaluated according to the criteria of temperature sensation, wet sensation, thermal comfort and fatigue sensation. The objective satisfaction was measured by skin temperature, microclimate (temperature and humidity), sweat rate and thermography. The comparative wearing evaluation identified the summer flight suit decreased the temperature between skin and suit by $0.42^{\circ}C$ (upper arm), $0.9^{\circ}C$ (calf) and the skin temperature by $0.3^{\circ}C$ (shoulder), $0.4^{\circ}C$ (upper arm), $0.5^{\circ}C$ (calf) as compared to the general flight suit. The humidity inside the summer flight suit decreased at head (7.73%), shoulder (5.86%), upper arm (5.26%), and calf (8.73%) compared to the one inside the general flight suit. Thermography showed that the air flowed through ventilation holes (neck and armpit). The design of ventilation holes applied to the summer flight suit can be applicable to overall clothing that requires thermal comfort such as dust-free garments, mechanical clothing and combat uniforms.

A Study on Dynamic Characteristic Analysis for the Industrial Monorail Vehicle (산업용 단선 궤도 차량의 주행 동특성에 관한 연구)

  • Lee Soo-Ho;Jung Il-Ho;Lee Hyung;Park Joong-Kyung;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.1005-1012
    • /
    • 2005
  • An OHT(Over Head Transportation) vehicle is an example of the industrial monorail vehicle, and it is used in the automobile, semiconductor, LCD manufacturing industries. OHT vehicle is moved by main wheels and guide rollers. The major function of the main wheel is to support and drive the OHT vehicle. The roles of the guide roller is the inhibition of derailment and steering of the OHT vehicle. Since the required vehicle velocity becomes faster and the required load capacity is increased, the durability characteristics of the wheel and roller, which was made of urethane, need to be increased. So it is necessary to estimate the fatigue life cycle of the wheel and roller. In this study, OHT dynamic model was developed by using the multi body dynamic analysis program ADAMS. Wheel and roller are modeled by the 3-D surface contact module. Especially, motor cycle tire mechanics is used in the wheel contact model. The OHT dynamic model can analyze the dynamic characteristic of the OHT vehicle with various driving conditions. And the result was verified by a vehicle traveling test. As a result of this study, the developed model is expected to predict wheel dynamic load time history and makes a contribution to design of a new monorail vehicle.

Structural and Dynamic Characteristic Analysis of a Feeder for an Automatic Assembly System of an LED Convergent Lighting Module (LED 융합조명 모듈 자동화 조립 시스템의 피더에 관한 구조해석 및 동특성 해석)

  • Choo, Se-Woong;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.124-133
    • /
    • 2017
  • In the current lighting market, LEDs that have a high luminous efficiency, a long life and consume less power have emerged as next generation lighting. Owing to various designs and sizes of LEDs, the production process of existing LEDs involves many tasks that require manual labor; hence, the assembly of LEDs necessitates manpower. Because of the use of manpower, the production costs of LEDs increases and production efficiency decreases. Recently, the assembly parts of LEDs have been standardized for minimizing manual labor, and an LED is developed as an LED panel. The automatic assembly system produces LED convergent lighting by assembling two LED panels and one diffusion cover. To increase the production efficiency of the LED convergent lighting module, it is important that the development of a feeder can continuously supply the LED panels is required, and whose design has sufficient stability. The automatic assembly system of the LED convergent lighting module consists of two feeders, which convey LED panels and diffusion covers to a main conveyor, which assembles the lifted panels and covers. In this study, structural analysis and fatigue life for forced loads on the conveyer line of the feeder in the process of lifting LED panels and diffusion covers of each feeder, is analyzed. In addition, the drive of the belt constituting the conveyor line of each feeder is simulated, and the dynamic characteristics of the belt is analyzed using the virtual engineering method.

Development of Automated Electric Snowplow by Using Clutch Bobbin for Improving Durability (내구성 향상을 위한 클러치 보빈 적용 고강성 전동식 제설기 개발)

  • Kim, Kee Joo;Park, Jun-Hyub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.949-954
    • /
    • 2016
  • When a snowplow is operating in the up or down direction, the sensor stops the movement automatically and the wire could be broken from an endless drive in the reverse direction impact or conversely winding wire. In the present study, a new bobbin was designed to ensure the durability of snowplows; in this design, the bobbin plays the role of a clutch during power transfer or idling. This will protect the blade of the snowplow during an impact and maintain close contact of the blade with the road. Therefore, the new technology to eliminate the tension and fatigue of the wire is suggested by winding a chain instead of the wire in the newly designed bobbin. From these, it was developed to extend the life of the snowplow without causing damages to the vehicle.

Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (I): with and without Turbulent Inflow (수평축 풍력터빈의 공력 하중 비교 (I): 난류 유입 유·무)

  • Kim, Jin;Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.391-398
    • /
    • 2016
  • This study focused on the aerodynamic loads of the horizontal axis wind turbine blade due to the normal turbulence inflow condition. Normal turbulence model (NTM) includes the variations of wind speed and direction, and it is characterized by turbulence intensity and standard deviation of flow fluctuation. IEC61400-1 recommends the fatigue analysis for the NTM and the normal wind profile (NWP) conditions. The aerodynamic loads are obtained at the blade hub and the low speed drive shaft for MW class horizontal axis wind turbine which is designed by using aerodynamically optimized procedure. The 6-components of aerodynamic loads are investigated between numerical results and load components analysis. From the calculated results the maximum amplitudes of oscillated thrust and torque for LSS with turbulent inflow condition are about 5~8 times larger than those with no turbulent inflow condition. It turns out that the aerodynamic load analysis with normal turbulence model is essential for structural design of the wind turbine blade.