• Title/Summary/Keyword: fat metabolism

Search Result 928, Processing Time 0.028 seconds

Effects of Dietary Protein on Growth and Lipid Metabolism in Growing Rats (식이단백질조성이 흰쥐의 성장과 지방대사에 미치는 영향)

  • Kim, Yoo-Sook;Kim, Wha-Young
    • Journal of Nutrition and Health
    • /
    • v.15 no.2
    • /
    • pp.119-128
    • /
    • 1982
  • The effect of dietary protein on growth and lipid levels of plasma and liver was studied in weanling male rats fed diets differing protein sources and amino acid balance. Rats were devided into 9 experimental diets which were grouped into 3 categories ; 1) Simple protein category includes gluten-, soy protein isolate-, and casein-containing diet groups, 2) Supplemented category includes casein supplemented with methionine, soy protein isolate supplemented with methionine, and gluten supplemented with lysine and methionine, 3) Mixed protein category includes diet groups containing gluten (2/3), casein (1/3), soy protein isolate (2/3) and casein (1/3), and casein (1/3), soy protein isolate (1/3) and gluten (1/3). The experimental diets composed of 15% protein, 65.8% carbohydrate, 10% fat and 1% cholesterol. The body wt. gain and P.E.R. were greater in rats of supplemented and mixed protein groups than simple protein groups. No statistical differences were found in plasma cholesterol among gluten, soy protein isolate and casein groups. Consumption of diets supplemented with limiting amino acid to gluten or soy protein isolate reduced the plasma cholesterol level by 23.2% and 34.2% respectively. However there was no difference between casein and the supplemented casein groups. The mixed protein groups shows relatively high plasma cholesterol concentration and low liver cholesterol levels. On the other hand gluten group showed low plasma cholesterol and high liver cholesterol levels, which means body cholesterol pool may not have been changed by the dietary protein. Feeding soy protein meal and the supplemented soy protein isolate resulted in lower plasma cholesterol, plasma triglycerides, liver cholesterol and liver triglycerides levels. This hypolipidemic effect is considered to see unique to soy protein isolate. Rats in gluten and the supplemented gluten groups showed lower plasma protein levels and a tendency of fatty liver.

  • PDF

Effect of Exogenous Insulin on The Metabolism of Normal Rat (인슐린 투여가 정상쥐의 대사에 미치는 영향)

  • 주진순
    • Journal of Nutrition and Health
    • /
    • v.22 no.4
    • /
    • pp.237-246
    • /
    • 1989
  • The objective of this study was to determine the metabolic effect of exogenous insulin on Sprague-Dawley rats. In a short-term study, the rats were injected insulin and sacrificed at 0.50, 1, 1.5, 2, 4 and 6hr, respectively. Another group of the rats were injected long-acting insulin everyday and sacrificed at 0, 10, 20 and 30days, respectively. Levels of hemoglobin, hematocrit, plasma glucose, plasma protein, plasma albmin, plasma lipids, cholesterol were determined for each experimental group. Also microscopic observation of fat infiltration of liver and aorta performed. No significant abnormality was abserved either at the short-term or at the long-term insulin injection on normal rats.

  • PDF

Physicochemical Characteristics of Extract from Flying Fish Roe Shell (날치 난소막 추출물의 물리화학적 특성)

  • Jang, Boo-Sik;Lee, Mi-Jin;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.387-393
    • /
    • 2014
  • In this study were performed to investigate the physicochemical properties of flying fish roe shell extract(FRSE) extracted from flying fish roe shell. FRSE was prepared using marine flying fish roe shell, and then analyzed it's physicochemical properties. The result showed that the nutritional composition of FRSE consisted of 81.00% protein, 9.12% ash and 4.48% moisture. There were OH-proline and glycine known as characteristics of collagen peptide in the amino acid analysis of FRSE, and there were large amount of glutamic acid and aspartic acid involved in the metabolism of glucose and fat. The calories of FRSE was 347 kcal/100g and molecular weight appeared less than 1,300 Da molecular weight distribution.

Study for Correlation between Seven Emotion(七情) as an emotional stressor and Obesity (심인적(心因的) Stressor로서의 칠정(七情)과 비만(肥滿)과의 상관관계(相關關係))

  • Song, Mi-Yeon;Shin, Hyun-Dae;Han, Ae-Ri
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.3 no.1
    • /
    • pp.75-84
    • /
    • 2003
  • Objective : In Western medicine, the cause of obesity include overeating, lack of exercise, genetic factor, endocrinal impediment and psychological factor. Since the society becomes more complexed and the tensions among social members gets intensified, psychological factor getting more important. In Oriental medicine, Seven Emotion(七情, in oriental medical term) as an emotional stressor was thought to be a factor of obesity. Therefore the purpose of this study is to examine the relationship between Seven Emotion and obesity in detail. Methods : overview the stress with the view of Oriental medicine and research the relationship between Seven Emotion as an emotional stressor and obesity. Results : 1. Seven Emotion can be understood as an emotional stress in Western medicine. If Seven Emotion is excessive, its extreme mental stimulation causes physical illness. 2. Having influence upon the function of internal organs, excessive Seven Emotion causes obesity. Since it hinders normal flow of Gangi(肝氣), Seven Emotion disturbs healthy function of Bi-Wi(脾胃) and normal fluctuation of Qi. Consequently, obesity is resulted from the accumulation of fat since normal metabolism of body is disrupted. 3. In Seven Emotion-Anger(怒), Joy(喜), Anxiety(憂), Thought(思), Sorrow(悲), Fear(恐), Surprise(驚)-give rise to Gan-bi-bul-wha(肝脾不和), Sim-hi-yang-huh(心脾兩虛), Bi-qi-huh(碑氣虛), Dam-sup-jeo-po(痰濕沮胞) and Wi-wha-sang-youm(胃火上炎) in type of symptom in obesity and therefore, cause obesity.

  • PDF

6-O-Galloylsalidroside, an Active Ingredient from Acer tegmentosum, Ameliorates Alcoholic Steatosis and Liver Injury in a Mouse Model of Chronic Ethanol Consumption

  • Kim, Young Han;Woo, Dong-Cheol;Ra, Moonjin;Jung, Sangmi;Kim, Ki Hyun;Lee, Yongjun
    • Natural Product Sciences
    • /
    • v.27 no.3
    • /
    • pp.201-207
    • /
    • 2021
  • We have previously reported that Acer tegmentosum extract, which is traditionally used in Korea to reduce alcohol-related liver injury, suppresses liver inflammation caused by excessive alcohol consumption and might improve metabolism. The active ingredient, 6-O-galloylsalidroside (GAL), was isolated from A. tegmentosum, and we hypothesized that GAL could provide desirable pharmacological benefits by ameliorating physiological conditions caused by alcohol abuse. Therefore, this study focused on whether GAL could ameliorate alcoholic fat accumulation and repair liver injury in mice. During chronic alcohol consumption plus binge feeding in mice, GAL was administered orally once per day for 11 days. Intrahepatic lipid accumulation was measured in vivo using a noninvasive method, 1H magnetic resonance imaging, and confirmed by staining with hematoxylin and eosin and Oil Red O. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured using a Konelab system, and the triglyceride content was measured in liver homogenates using an enzymatic peroxide assay. The results suggested that GAL alleviated alcohol-induced steatosis,e as indicated by decreased hepatic and serum triglyceride levels in ethanol-fed mice. GAL treatment also correlated with a decrease in the Cd36 mRNA expression, thus potentially inhibiting the development of alcoholic steatosis via the hepatic de novo lipogenesis pathway. Furthermore, treatment with GAL inhibited the expression of cytochrome P450 2E1 and attenuated hepatocellular damage, as reflected by a reduction in ALT and AST levels. These findings suggest that GAL extracted from A. tegmentosum has the potential to serve as a bioactive agent for the treatment of alcoholic fatty liver and liver damage.

Myonectin inhibits adipogenesis in 3T3-L1 preadipocytes by regulating p38 MAPK pathway

  • Park, Tae-Jun;Park, Anna;Kim, Jaehoon;Kim, Jeong-Yoon;Han, Baek Soo;Oh, Kyoung-Jin;Lee, Eun Woo;Lee, Sang Chul;Bae, Kwang-Hee;Kim, Won Kon
    • BMB Reports
    • /
    • v.54 no.2
    • /
    • pp.124-129
    • /
    • 2021
  • In current times, obesity is a major health problem closely associated with metabolic disease such as diabetes, dyslipidemia, and cardiovascular disease. The direct cause of obesity is known as an abnormal increase in fat cell size and the adipocyte pool. Hyperplasia, the increase in number of adipocytes, results from adipogenesis in which preadipocytes differentiate into mature adipocytes. Adipogenesis is regulated by local and systemic cues that alter transduction pathways and subsequent control of adipogenic transcription factors. Therefore, the regulation of adipogenesis is an important target for preventing obesity. Myonectin, a member of the CTRP family, is a type of myokine released by skeletal muscle cells. Although several studies have shown that myonectin is associated with lipid metabolism, the role of myonectin during adipogenesis is not known. Here, we demonstrate the role of myonectin during adipocyte differentiation of 3T3-L1 cells. We found that myonectin inhibits the adipogenesis of 3T3-L1 preadipocytes with a reduction in the expression of adipogenic transcription factors such as C/EBPα, β and PPARγ. Furthermore, we show that myonectin has an inhibitory effect on adipogenesis through the regulation of the p38 MAPK pathway and CHOP. These findings suggest that myonectin may be a novel therapeutic target for the prevention of obesity.

Review on Amorfrutin of Licorice for Type2 Diabetes Mellitus (감초의 amorfrutin성분과 당뇨 치료 효과에 대한 고찰)

  • Han, Juhee;Heo, Hyemin;Jeong, Minjeong;Kim, Hongjun;Jang, Insoo
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.6
    • /
    • pp.1078-1088
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the effect of amorfrutin of licorice for Type2 diabetes mellitus. Method: The PubMed, CNKI, Wanfang, OASIS, NDSL, J-STAGE, and CiNii databases were searched from the beginning of the search to September 20, 2020, with no limits on language. Extractions and selections from the literature were made by two authors. The study included in vivo experiments with amorfrutins in high-fat diet-induced obesity C57BL/6 mice and leptin receptor-deficient db/db mice and in silico studies. Results & Conclusion: Four studies were finally selected. We confirmed that amorfrutin treatment considerably improved insulin sensitivity and glucose tolerance and reduced plasma insulin and glucose. Amorfrutins bind to and selectively activate Peroxisome Proliferator-Activated Receptor Gamma (PPARγ), which plays an important role in glucose metabolism. Amorfrutins also strongly bind to the glucagon receptor (GCGR) and work as antagonist. Using the amorfrutins from licorice could therefore be helpful in treating type2 diabetes mellitus.

Prevention of Cholesterol Gallstone Formation by Lactobacillus acidophilus ATCC 43121 and Lactobacillus fermentum MF27 in Lithogenic Diet-Induced Mice

  • Oh, Ju Kyoung;Kim, You Ra;Lee, Boin;Choi, Young Min;Kim, Sae Hun
    • Food Science of Animal Resources
    • /
    • v.41 no.2
    • /
    • pp.343-352
    • /
    • 2021
  • The objective of this study was to evaluate the effects of Lactobacillus acidophilus ATCC 43121 and L. fermentum MF27 on biochemical indices in the serum, cholesterol metabolism in the liver and mucin expression in the gallbladder in lithogenic diet (LD)-induced C57BL/6J mice to determine the preventive effects of lactobacilli on gallstone formation. By the end of 4 wk of the experimental period, mice fed on a LD with high-fat and high-cholesterol exhibited higher levels of total and low-density lipoprotein cholesterol in the serum compared to mice fed on control diet or LD with L. acidophilus ATCC 43121 (LD+P1; p<0.05). Cholesterol-lowering effects observed in the LD+P1 and LD with L. fermentum MF27 (LD+P2) groups were associated with reduced expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase in the liver compared to the LD group (p<0.05). Furthermore, expression of the gel-forming mucin, including MUC5AB and MUC5B, was suppressed in the LD+P1 and LD+P2 groups compared to the LD group (p<0.05). Therefore, steady intake of both L. acidophilus ATCC 43121 and L. fermentum MF27 may have the ability to prevent the formation of cholesterol gallstones in LD-induced C57BL/6J mice.

Efficacy of nobiletin in improving hypercholesterolemia and nonalcoholic fatty liver disease in high-cholesterol diet-fed mice

  • Kim, Young-Je;Yoon, Dae Seong;Jung, Un Ju
    • Nutrition Research and Practice
    • /
    • v.15 no.4
    • /
    • pp.431-443
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Nobiletin (NOB), a citrus flavonoid, is reported to have beneficial effects on cardiovascular and metabolic health. However, there is limited research investigating the effect of long-term supplementation with low-dose NOB on high-cholesterol diet (HCD)-induced hypercholesterolemia and non-obese nonalcoholic fatty liver disease (NAFLD). Therefore, we investigated the influence of NOB on hypercholesterolemia and NAFLD in HCD-fed mice. SUBJECTS/METHODS: C57BL/6J mice were fed a normal diet (ND) or HCD (35 kcal% fat, 1.25% cholesterol, 0.5% cholic acid) with or without NOB (0.02%) for 20 weeks. RESULTS: HCD feeding markedly reduced the final body weight compared to ND feeding, with no apparent energy intake differences. NOB supplementation suppressed HCD-induced weight loss without altering energy intake. Moreover, NOB significantly decreased the total cholesterol (TC) levels and the low-density lipoprotein (LDL)/very-LDL-cholesterol to TC ratio, and increased the high-density lipoprotein-cholesterol/TC ratio in plasma, compared to those for HCD feeding alone. The plasma levels of inflammatory and atherosclerosis markers (C-reactive protein, oxidized LDL, interleukin [IL]-1β, IL-6, and plasminogen activator inhibitor-1) were significantly lower, whereas those of anti-atherogenic adiponectin and paraoxonase were higher in the NOB-supplemented group than in the HCD control group. Furthermore, NOB significantly decreased liver weight, hepatic cholesterol and triglyceride contents, and lipid droplet accumulation by inhibiting messenger RNA expression of hepatic genes and activity levels of cholesterol synthesis-, esterification-, and fatty acid synthesis-associated enzymes, concomitantly enhancing fatty acid oxidation-related gene expression and enzyme activities. Dietary NOB supplementation may protect against hypercholesterolemia and NAFLD via regulation of hepatic lipid metabolism in HCD-fed mice; these effects are associated with the amelioration of inflammation and reductions in the levels of atherosclerosis-associated cardiovascular markers. CONCLUSIONS: The present study suggests that NOB may serve as a potential therapeutic agent for the treatment of HCD-induced hypercholesterolemia and NAFLD.

Beneficial effect of Polygoni Multiflori Radix in high fructose diet-induced metabolic syndrome rat model (고과당식이 랫드모델에서 적하수오 투여에 의한 대사증후군 개선효과)

  • Kho, Min Chul;Lee, Yun Jung;Yoon, Jung Joo;Lee, Ho Sub;Kang, Dae Gill
    • The Korea Journal of Herbology
    • /
    • v.30 no.2
    • /
    • pp.11-18
    • /
    • 2015
  • Objectives : Polygoni Multiflori Radix (Jeokhasuo in Korean) is a Oriental traditional herbs widely used in East Asian countries. Overconsumption of fructose results in hypertension, dyslipidemia, obesity and impaired glucose tolerance which have documented as a risk of cardiovascular diseases. This experimental study was designed to investigate the beneficial effects of an ethanol extract from Polygoni Multiflori Radix (PMR) in high-fructose (HF) diet-induced metabolic syndrome rat model. Methods : Sprague-Dawley (SD) rats were divided into three groups; Control group, receiving regular diet and tap water, HF group, and HF + PMR group both receiving supplemented with 65% fructose (n=10), respectively. The HF + PMR group initially received HF diet with PMR (100 mg/kg/day) for 8 weeks. Results : PMR significantly prevented the metabolic disturbances such as hyperlipidemia, hypertension and impaired glucose tolerance. Chronic treatment with PMR significantly decreased body weight, fat weight and adipocyte size, suggesting a role of anti-obesity effect. PMR led to improve the hyperlipidemia through the increase in HDL cholesterol level as well as the decrease in triglyceride and LDL cholesterol level. In addition, PMR suppressed adhesion molecules and endothelin-1 (ET-1) expression in aorta resulting in the decrease of hypertension. In muscle tissue, PMR significantly recovered the HF-induced insulin resistance through increase of insulin receptor substrate-1 (IRS-1), p-$AMPK{\alpha}1/2$, and p-Akt expression. PMR improved HF-induced metabolic disorders and its action was caused by energy metabolism-mediated insulin signaling activation. Conclusions : These results demonstrate that PMR may be a beneficial therapeutic for metabolic syndrome through the improvement of hyperlipidemia, obesity, insulin resistance and hypertension.