• 제목/요약/키워드: farm reservoir

검색결과 50건 처리시간 0.032초

On the Linkage Between Irrigation Facilities and Rice Production Under Drought Events (가뭄사상 및 농업수리시설물이 쌀 생산량에 미치는 영향에 대한 상관 분석)

  • Woo, Seung-Beom;Nam, Won-Ho;Jeon, Min-Gi;Yoon, Dong-Hyun;Kim, Taegon;Sung, Jae-Hoon;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제63권5호
    • /
    • pp.95-105
    • /
    • 2021
  • Drought is a disaster that causes prolonged and wide scale damage. Recently, the severity and frequency of drought occurrences, and drought damage have been increased significantly due to climate change. As a result, a quantitative study of drought factors is needed to better understand and prevent future droughts. In the case of agricultural drought, several existing studies examine the economic damage caused by droughts and their causes, but these studies are not well suited to estimating crop-oriented agricultural drought damage and the factors that absolutely affect agricultural drought. This study determines which factors most affect agricultural drought. It examines meteorological factors and those related to agricultural water supplied by irrigation facilities. Rice paddy production per unit area is lower than the average from the last two years where agricultural drought occurred. We compare the relative frequency of agricultural drought impacts with irrigation facilities, effective reservoir storage, the number of water supply facilities, and the meteorological drought index such as Standardized Precipitation Index (SPI). To identify factors that affect agricultural drought, we correlate rice paddy production anomalies with irrigation water supply for the past two years. There was a high positive correlation between rice paddy production and irrigation water usage, and there was a low or moderate negative correlation between rice paddy production anomalies compared to the average of the past two years and SPI. As a result, agricultural water supply by irrigation facilities was judged to be more influential than meteorological factors in rice paddy production. This study is expected to help local governments establish policies related to agricultural drought response.

Comparative Genomics Approaches to Understanding Virulence and Antimicrobial Resistance of Salmonella Typhimurium ST1539 Isolated from a Poultry Slaughterhouse in Korea

  • Kim, Eunsuk;Park, Soyeon;Cho, Seongbeom;Hahn, Tae-Wook;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권6호
    • /
    • pp.962-972
    • /
    • 2019
  • Non-typhoidal Salmonella (NTS) is one of the most frequent causes of bacterial foodborne illnesses. Considering that the main reservoir of NTS is the intestinal tract of livestock, foods of animal origin are regarded as the main vehicles of Salmonella infection. In particular, poultry colonized with Salmonella Typhimurium (S. Typhimurium), a dominant serotype responsible for human infections, do not exhibit overt signs and symptoms, thereby posing a potential health risk to humans. In this study, comparative genomics approaches were applied to two S. Typhimurium strains, ST1539 and ST1120, isolated from a duck slaughterhouse and a pig farm, respectively, to characterize their virulence and antimicrobial resistance-associated genomic determinants. ST1539 containing a chromosome (4,905,039 bp; 4,403 CDSs) and a plasmid (93,876 bp; 96 CDSs) was phylogenetically distinct from other S. Typhimurium strains such as ST1120 and LT2. Compared to the ST1120 genome (previously deposited in GenBank; CP021909.1 and CP021910.1), ST1539 possesses more virulence determinants, including ST64B prophage, plasmid spv operon encoding virulence factors, genes encoding SseJ effector, Rck invasin, and biofilm-forming factors (bcf operon and pefAB). In accordance with the in silico prediction, ST1539 exhibited higher cytotoxicity against epithelial cells, better survival inside macrophage cells, and faster mice-killing activity than ST1120. However, ST1539 showed less resistance against antibiotics than ST1120, which may be attributed to the multiple resistanceassociated genes in the ST1120 chromosome. The accumulation of comparative genomics data on S. Typhimurium isolates from livestock would enrich our understanding of strategies Salmonella employs to adapt to diverse host animals.

Application of CCTV Image and Semantic Segmentation Model for Water Level Estimation of Irrigation Channel (관개용수로 CCTV 이미지를 이용한 CNN 딥러닝 이미지 모델 적용)

  • Kim, Kwi-Hoon;Kim, Ma-Ga;Yoon, Pu-Reun;Bang, Je-Hong;Myoung, Woo-Ho;Choi, Jin-Yong;Choi, Gyu-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제64권3호
    • /
    • pp.63-73
    • /
    • 2022
  • A more accurate understanding of the irrigation water supply is necessary for efficient agricultural water management. Although we measure water levels in an irrigation canal using ultrasonic water level gauges, some errors occur due to malfunctions or the surrounding environment. This study aims to apply CNN (Convolutional Neural Network) Deep-learning-based image classification and segmentation models to the irrigation canal's CCTV (Closed-Circuit Television) images. The CCTV images were acquired from the irrigation canal of the agricultural reservoir in Cheorwon-gun, Gangwon-do. We used the ResNet-50 model for the image classification model and the U-Net model for the image segmentation model. Using the Natural Breaks algorithm, we divided water level data into 2, 4, and 8 groups for image classification models. The classification models of 2, 4, and 8 groups showed the accuracy of 1.000, 0.987, and 0.634, respectively. The image segmentation model showed a Dice score of 0.998 and predicted water levels showed R2 of 0.97 and MAE (Mean Absolute Error) of 0.02 m. The image classification models can be applied to the automatic gate-controller at four divisions of water levels. Also, the image segmentation model results can be applied to the alternative measurement for ultrasonic water gauges. We expect that the results of this study can provide a more scientific and efficient approach for agricultural water management.

Remediation Design Using Soil Washing and Soil Improvement Method for As Contaminated Soils and Stream Deposits Around an Abandoned Mine (토양 세척법과 석회를 첨가한 토양 안정화 공법을 이용한 폐광산 주변 비소 오염 토양 및 하천 퇴적토 복원)

  • 이민희;이정산;차종철;최정찬;이정민
    • Economic and Environmental Geology
    • /
    • 제37권1호
    • /
    • pp.121-131
    • /
    • 2004
  • Removal efficiencies of soil washing and soil improvement processes to remediate farmland soils and stream deposits around Goro abandoned mine were investigated with batch and column experiments. For As-contaminated farm-land soils around Goro mine, batch tests to quantify As extraction rate from contaminated soils and lime treated contaminated soils were performed. The contaminated soil mixed with lime decreased As extraction rate less than one fourth, suggesting that the soil improvement method mixed with lime dramatically decrease As extraction rate. A storage dam will be constructed in the lower part of the main stream connected to Goro abandoned mine and the amount of As extracted from the bottom soils of reservoir could be the main source to contaminate water of reservoir. The decrease of As extraction amount from the bottom in reservoir, caused by the application of the soil improvement method was investigated from the physically simulated column experiment and results showed that As extraction rate decreased to one forty when 1% lime mixed soil improvement was applied to contaminated soils. For contaminated stream deposits connected Goro mine, the removal efficiency of the soil washing method was investigated with batch experiments. Hydrochloric acid, citric acid, acetic acid and distilled water were used as soil washing solution and 0.01, 0.05, 0.1, 0.5, 1.0 N of washing solution were applied to extract As. When washing with 0.05 N of hydrochloric acid or citric acid, more than 99.9% of As was removed from stream deposits, suggesting that As contaminated stream deposits around Goro mine be successfully remediated with the soil washing process. Total volumes of contaminated soils and deposits needed for remediation were calculated based on three different reme-diation target concentrations and the operation cost of soil washing for calculated soil volumes was estimated. Results from this research could be directly used to make a comprehensive countermeasure to remediate contaminated area around Goro mine and also many contaminated areas similar to this research area.

A Study on the Biotop's Characters of the Mixed Rural City(III) - Case Study of Chonan - (도농통합형 도시에 있어서 생물서식처 공간특성에 관한 연구(III) - 천안시를 중심으로 -)

  • Bang, Kwang-Ja;Lee, Haeng-Youl;Kang, Hyun-Kyoung;Park, Sung-Eun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • 제2권1호
    • /
    • pp.48-57
    • /
    • 1999
  • This study was aimed to establish biotop unit of the mixed rural city for the method and process of the biotop mapping system. Survey site was Maejuri of Seunghwan(158ha), Gisanri of Mokchon(132ha) and Namkwanri, Pungsemeon(214ha). So the main process was divided by 4 schemes such as Biosphere, Geosphere, Antrosphere and Evaluation. Also the GIS(geographic information system) was used to make the database of the biotop and biotop complex, analyze the cross-combinations and analyze the characters of the biotop. Biotop mapping system had 5 steps which were proceeded with research goals, constructing the spatial database and attribute database, classifying the 3 types of biotop such as tree/shrub biotop, grass biotop and wetland biotop, cross-analyzing 3 biotop types with land use, habitat characters, relief characters and danger/disturbance elements and evaluating the 3 types of biotop. The results of applicating the biotop mapping system on the research site as followings : The distributions of the land uses in Maejuri, Seunghwan eup in Chonan city were recorded by forest(29.8%), orchard(14.1%) and landscaping around building site(9.0%). Gisanri, Mokchonmeon were composed of forest(64.5%), farm(12.8%) and Namkwanri, Pungsemeon were concentrated rice field(39.6%), dwell district(22.4%). The Tree/Shrub biotop type was reclassed by the forest type, natural and artificial decidous type with natural coniferous. The Grass biotop type was reclassed by the wild grassland type, garden type and peddy field with wild grassland. The distributions of the wet land were pointed high at the wet land type with reed marsh and edge vegetation around wet land in reservoir and river. The evaluation of the mapped bitopes was completed to the following aspect, "amenity" and "environmental education". A high value of 7.13%(1 class) was shown Maejuri, Seunghwan eup. The regions which were studied synthetically are divided to three parts ; the area where have nature and art mixed(Seunghwan), the area which is more artificial because people inhabit there for a long time(Pungsemeon) and the area that ecological environment is threatened by development pressure(Mokchonmeon). Therefore, ecological restoration plan which depends on specific property of the regions should be established. Also the interdisplinary researches were needed to develop the BMS(Biotop Mapping System) in Korea because of the differences with Germany, England's ecological habitat conditions.

  • PDF

Improving of land-cover map using IKONOS image data (IKONOS 영상자료를 이용한 토지피복도 개선)

  • 장동호;김만규
    • Spatial Information Research
    • /
    • 제11권2호
    • /
    • pp.101-117
    • /
    • 2003
  • High resolution satellite image analysis has been recognized as an effective technique for monitoring local land-cover and atmospheric changes. In this study, a new high resolution map for land-cover was generated using both high-resolution IKONOS image and conventional land-use mapping. Fuzzy classification method was applied to classify land-cover, with minimum operator used as a tool for joint membership functions. In separateness analysis, the values were not great for all bands due to discrepancies in spectral reflectance by seasonal variation. The land-cover map generated in this study revealed that conifer forests and farm land in the ground and tidal flat and beach in the ocean were highly changeable. The kappa coefficient was 0.94% and the overall accuracy of classification was 95.0%, thus suggesting a overall high classification accuracy. Accuracy of classification in each class was generally over 90%, whereas low classification accuracy was obtained for classes of mixed forest, river and reservoir. This may be a result of the changes in classification, e.g. reclassification of paddy field as water area after water storage or mixed use of several classification class due to similar spectral patterns. Seasonal factors should be considered to achieve higher accuracy in classification class. In conclusion, firstly, IKONOS image are used to generated a new improved high resolution land-cover map. Secondly, IKONOS image could serve as useful complementary data for decision making when combined with GIS spatial data to produce land-use map.

  • PDF

Long-term Variations of Trophic State and Phosphorus Loading in Lake Andong, Korea (안동호의 장기간의 영양상태와 인부하량)

  • Kwon, Sang-Yong;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • 제35권4호통권100호
    • /
    • pp.249-256
    • /
    • 2002
  • The variation of trophic state was measured in a reservoir (Lake Andong, Korea) from 1993 to 2000. Phosphorus loading from the watershed was estimated by measuring total phosphorus concentration in the main inflowing stream (the Nakdong River). Phosphorus discharge from the pen-type fish farms was estimated from the amount of fish feed and the rate of phosphorus excretion per feed weight. The transparency in summer was about 2.0 m in 1993 and 1994, but it decreased to about 1.2 m in 1997 and 1998, and recovered to about 2.3 m in 1999 and 2000. TP increased from $11-30\;mgP/m^3$ in 1993 to $18-42\;mgP/m^3$ in 1998, but recovered to $8-13\;mgP/m^3$ in 2000, whereas TN decreased slightly from 1.81-2.96 mgN/L in 1993 to 1.17-1.80 mgN/L in 2000. TN/TP ratios decreased from 82-281 in 1993 to 21-143 in 1998, but again increased to 101-209 in 2000 due to the decrease of TP. The average chlorophyll-a concentration in growing season was in the range of $4.8-16.2\;mg/m^3$ from 1993 to 1997, but it decreased to $3.7-5.2\;mg/m^3$ after 1998. Trophic State Index had shown a gradual increase until 1996, and since then it has declined. The major cause of the trophic state recovery is thought to be the removal of fish farms in April 1998.

Odor Reduction of Pig Wastewater Using Magnesia (in-situ test) (마그네시아를 이용한 돈분 폐수의 악취 저감(현장 시험))

  • Bae, Su Ho;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • 제66권3호
    • /
    • pp.202-208
    • /
    • 2022
  • In this study, we tried to obtain the optimal conditions to reduce odors generated from pig wastewater using magnesia (MgO) through in-situ test after producing a reactor for removing odors. For this purpose, the filling amount of magnesia, the injection amount of pig wastewater, the aeration method, the aeration amount and the aeration time were considered. The field experiment was conducted at Cheongwoon Livestock Farm, which has a pig wastewater reservoir. As the amount of magnesia added to the weight of wastewater (500 kg) increases, the amount of ammonia (NH3) and hydrogen sulfide (H2S) generated tended to gradually decrease. As a result of the test, ammonia and hydrogen sulfide in the pig wastewater decreased up to 65% and 77%, respectively, for 2 days aeration after 0.8% of magnesia was added to the reaction tank. The initial pH of the pig wastewater in the reactor was 8.2, and the pH was found to be 9.2 when magnesia was added up to 0.8%. In the light of this trend, it can be known that magnesia gradually increases the pH in the pig wastewater and makes it weakly alkaline. As the pH increases, part of the ammonia gas present in the pig wastewater vaporizes into the air and the remaining part is removed by precipitation after chemical bonding with dissolved magnesium ions and phosphate ions. In order to remove the odor of pig wastewater and turn it into compost, most of the existing livestock farms go through a six-month aeration process using microorganisms. In contrast, the current study proved the effect of removing odors from pig wastewater within 2 days through chemical reactions that do not affect microbial activity.

A Study on a Drainage Facility of the Western Shore in Wolji Pond (월지(月池) 서측 호안의 출수시설(出水施設)에 관한 고찰)

  • Oh, Jun-Young
    • Korean Journal of Heritage: History & Science
    • /
    • 제51권3호
    • /
    • pp.72-87
    • /
    • 2018
  • This study highlights a drainage gate and a ditch, which existed around the whole area of the western shore of Wolji Pond(月池) and focuses on a possible connection between the drainage facility on the western shore and the historical drainage system of Wolji Pond. Specifically, it primarily considered locations and the form of a drainage gate, the relationship between northwestern ditch of Wolji Pond and the drainage gate, and the establishment period and the character of the drainage facility on the western shore. The drainage gate found in excavation in 1975 is determined as the same facility as Surakgu(水落口) recorded on an actual measurement drawing, 1922. Therefore, it is highly probable that there were already the drainage facility in the western shore of Wolji Pond before the 1920s. The drainage gate constructed by processing rectangular stones has four drainage holes for controlling water level. The way of the drainage through the drainage holes is the same as that of the northern shore of Wolji Pond. From a cadastral map drawn in 1913, it is found that the ditch existed in northwest of Wolji Pond. The ditch was proximate to the drainage gate and shared the same axes. Hence, the ditch and the drainage gate are determined as a organic facility connected to the drainage system of Wolji Pond. In particular, the ditch existed in northwest of Wolji Pond is the basis for judging that the drainage facility in the western shore were established before the 1910s. Water flowed in through drainage holes of the drainage gate is drained into the northwest of Wolji Pond, through the ditch. The establishment period and the intention of the drainage facility on the western shore can be interpreted in two aspects. First, they might be 'a agricultural irrigation facility in the Joseon era', given that Wolji Pond was recorded as a agricultural reservoir, and that the whole northwestern area of Wolji Pond was used as farm land areas. Second, they might be 'a drainage facility for controlling the water level in creating Wolji Pond', given that the drainage gate was annexed to the lower shore forming the waterline of Wolji Pond, and that the hight of drainage holes on top of the drainage gate was similar to the full water level of Wolji Pond. Considering the related grounds and circumstance, the latter possibility is high.

Effect of Soil Incorporation of Graminaceous and Leguminous Manures on Tomato (Lycoperiscon esculentum Mill.) Growth and Soil Nutrient Balances (화본과 및 두과 녹비작물 토양환원에 따른 토마토 생육 및 토양 양분수지량 변화)

  • Lee, In-Bog;Kang, Seok-Beom;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • 제27권4호
    • /
    • pp.343-348
    • /
    • 2008
  • To investigate the effects of incorporation of green manures (GM) into a sandy loam soil on growth, yield, and nutrient uptake of tomato (Lycoperiscon esculentum Mill.) and nutrient balances (input minus offtake of nutrients), five tomato production systems were compared under the condition of plastic film house: 1) a no input system (no additional amendment or inputs, 0-To-0-To); 2) a conventional system (application of N-P-K chemical fertilizers, Cf-To-Cf-To); 3) a leguminous GM-containing system (hairy vetch-tomato-soybean-tomato, Hv-To-Sb-To); 4) a graminaceous GM-containing system (rye-tomato-sudan grass-tomato, Ry-To-Sd-To); and 5) system mixed with leguminous and graminaceous GMs (rye-tomatosoybean- tomato, Ry-To-Sb-To). Here, hairy vetch and rye were cultivated as winter cover crops during late $Dec{\sim}late$ Feb and soybean and sudan grass were cultivated as summer cover crops during late $Jun{\sim}mid$ Aug. All of them cut before tomato planting and then incorporated into soil. Biomass of GMs was greater in summer season than that of winter season. Nitrogen amount fixed by a leguminous plants was about $126\;kg\;ha^{-1}$ per a cropping season, corresponding to 60% N level needed for tomato production, which was comparable to 50 and $96\;kg\;ha^{-1}$ fixed by rye and sudan grass. As a result, tomato yield of Hv-To-Sb-To system (legume GM treatment) was similar to Cf-To-Cf-To (conventional), but that in Ry-To-Sd-To system (graminaceous GM treatment) was not attained to a half level of conventional treatment. Nutrient budgets for N, P and K on the conventional farm were balanced or somewhat positive exception for minus-balanced K. Ry-To-Sd-To system showed a positive N, P and K budgets due to the depressed growth of tomato which is caused by high C/N ratio and low N-fixing capacity of the GMs. Inversely, those of Hv-To-Sb-To system were negative in all of N, P and K budgets because of increased growth and yield of tomato with high nitrogen-supplying capacity as well as low C/N ratio of leguminous GM. In conclusion, although conventional cultivation has an advantage in relation to N, P and K nutrient budgets rather than GM-incorporated systems, a leguminous GMs could be recommended as nitrogen reservoir and soil amendment because the yield of tomato between use of leguminous GM and conventional cultivation was not only significantly difference, but also GMs commonly reduce nutrient loss and improve microbial communities.