• Title/Summary/Keyword: far-field measurement

Search Result 150, Processing Time 0.029 seconds

Local Differential Pixel Assessment Method for Image Stitching (영상 스티칭의 지역 차분 픽셀 평가 방법)

  • Rhee, Seongbae;Kang, Jeonho;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.775-784
    • /
    • 2019
  • Image stitching is a technique for solving the problem of narrow field of view of a camera by composing multiple images. Recently, as the use of content such as Panorama, Super Resolution, and 360 VR increases, the need for faster and more accurate image stitching technology is increasing. So far, many algorithms have been proposed to satisfy the required performance, but the objective evaluation method for measuring the accuracy has not been standardized. In this paper, we present the problems of PSNR and SSIM(Structural similarity index method) measurement methods and propose a Local Differential Pixel Mean method. The LDPM evaluation method that includes geometric similarity and brightness measurement information is proved through a test, and the advantages of the evaluation method are revealed through comparison with SSIM.

Design and Implementation of Wideband Patch Antenna with Folded and Shorted Structure for 5 GHz WLAN (폴디드 구조와 단락 구조를 이용한 5 GHz 무선 랜용 광대역 패치 안테나 설계 및 구현)

  • Kim Yong-Hee;Han Jun-Hee;Lee Won-Kew;Yang Woon-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.760-766
    • /
    • 2006
  • In this paper, we present a wideband patch antenna with folded and shorted structure for 5 GHz WLAN(Wireless Local Area Network). The proposed antenna used folded and shorted structure in the rectangular patch for miniaturization and wide frequency bandwidth. The antenna was designed by using 3D simulation program, HFSS(High Frequency Structure Simulator) software of the Ansoft company and the implemented antenna was measured by using HP 8720c network analyzer and far field measurement chamber. Simulation result on the return loss shows fairly good characteristic of at least 13.41dB in whole frequency range of interests, and the 10dB bandwidth is 1,523MHz which shows wide bandwidth characteristic. And the simulated maximum gain of the proposed antenna is 6.57 dBi at 5.825GHz. Measured result for the 10dB bandwidth of the implemented folded and shorted structure antenna is 1,377 MHz. Measured maximum gain of the implemented antenna is 6.87dBi at 5.775GHz. Measured results for the implemented antenna showed applicable performances for the 5 GHz WLAN.

Numerical Computation of Radar Scattering Coefficient for Randomly Rough Dielectric Surfaces (불규칙적으로 거친 유전체 표면에서의 레이더 산란계수 수치해석적 계산)

  • 차형준;오이석
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.1
    • /
    • pp.65-72
    • /
    • 2000
  • Scattering coefficients of randomly rough lossy dielectric surfaces were computed by using the FDTD(Finite-Difference Time-Domain) method and the Monte Carlo method in this paper. The FDTD method was applied to compute electromagnetic wave scattering characteristics at any incident angles, any linear polarizations by dividing the computation region into the total-field region and the scattered-field region. The radar cross sections(RCS) of conducting cylinders have been computed and compared with theoretical results, measurement data and the results from the method of moment(MoM) to verify the FDTD algorithm. Then, to apply the algorithm to compute scattering coefficients of distributed targets, a two-dimensionally rough surface was generated numerically for given roughness characteristics. The far-zone scattered fields of 50 statistically independent dielectric rough surfaces were computed and the scattering coefficient of the surface was calculated from the scattered fields by using the Monte Carlo method. It was found that these scattering coefficients agree well with the SPM(Small Pertubation Method) model in its validity region.

Preliminary numerical analysis of controllable prestressed wale system for deep excavation

  • Lee, Chang Il;Kim, Eun Kyum;Park, Jong Sik;Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1061-1070
    • /
    • 2018
  • The main purpose of retaining wall methods for deep excavation is to keep the construction site safe from the earth pressure acting on the backfill during the construction period. Currently used retaining wall methods include the common strut method, anchor method, slurry wall method, and raker method. However, these methods have drawbacks such as reduced workspace and intrusion into private property, and thus, efforts are being made to improve them. The most advanced retaining wall method is the prestressed wale system, so far, in which a load corresponding to the earth pressure is applied to the wale by using the tension of a prestressed (PS) strand wire. This system affords advantages such as providing sufficient workspace by lengthening the strut interval and minimizing intrusion into private properties adjacent to the site. However, this system cannot control the tension of the PS strand wire, and thus, it cannot actively cope with changes in the earth pressure due to excavation. This study conducts a preliminary numerical analysis of the field applicability of the controllable prestressed wale system (CPWS) which can adjust the tension of the PS strand wire. For the analysis, back analysis was conducted through two-dimensional (2D) and three-dimensional (3D) numerical analyses based on the field measurement data of the typical strut method, and then, the field applicability of CPWS was examined by comparing the lateral deflection of the wall and adjacent ground surface settlements under the same conditions. In addition, the displacement and settlement of the wall were predicted through numerical analysis while the prestress force of CPWS was varied, and the structural stability was analysed through load tests on model specimens.

Evaluation of lead concentration on the surface of children's playing equipments using a field portable x-ray fluorescence (FPXRF) (FPXRF를 이용한 어린이 놀이시설의 페인트 표면 납 농도 평가)

  • Kim, Nam-Soo;Choi, Seung-Hyun;Cho, Kwang-Sung;Kim, Jin-Ho;Ham, Jung-O;Ahn, Kyu-Dong;Lee, Byung-Kook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.2
    • /
    • pp.133-140
    • /
    • 2008
  • In order to evaluate the possible environmental lead hazard in children's playground and to test the practicability of field portable x-ray fluorescence(FPXRF) for environmental lead measurement, authors investigated lead concentration of lead-based paint on the surface of children's playing equipments in the playground of 13 apartments using FPXRF at the site in city A, Choongnam province. 93 spots were determined surface lead concentrations 3 times each using a FPXRF. Out of 93 spots, 83 spots (92%) were revealed to have lead in paint and mean concentration was $1.12{\pm}1.76mg/cm^2$. The mean concentration of lead on the surface of playing equipments at the apartments near the main street was $1.20mg/cm^2$ and higher than those at the apartments far away from the main street($0.81mg/cm^2$)(p<0.05). The mean concentration of lead on the surface of playing equipments painted with yellow color was $3.23mg/cm^2$ and the highest among all colors, whereas equipment painted white color was non-detectable. PVC and etc materials for construction of playing equipment showed higher surface lead concentration than other materials. The result suggests that it is necessary to be taken caution of the lead exposure in the playground of apartment and it should be taken any kind of confirmative action to prevent unwanted lead exposure from surface lead source of playing equipment. Authors found that FPXRF was very reliable and useful for field measurement to detect lead on the painted surface.

A Methodology for Quality Control of Railroad Trackbed Fills Using Compressional Wave Velocities : I. Preliminary Investigation (압축파 속도를 이용한 철도 토공노반의 품질관리 방안 : I. 예비연구)

  • Park, Chul-Soo;Mok, Young-Jin;Choi, Chan-Yong;Lee, Tai-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.45-55
    • /
    • 2009
  • The quality of railroad trackbed fills has been controlled by field measurements of density and bearing resistance of plate-load tests. The control measures are compatible with the design procedures whose design parameter is $k_{30}$ for both ordinary-speed railways and high-speed railways. However, one of fatal flaws of the design procedures is that there are no simple laboratory measurement procedures for the design parameters ($k_{30}$ or, $E_{v2}$ and $E_{v2}/E_{v1}$) in design stage. To overcome the defect, the compressional wave velocity was adopted as a control measure, in parallel with the advent of the new design procedure, and its measurement technique was proposed in the preliminary investigation. The key concept of the quality control procedure is that the target value for field compaction control is the compressional wave velocity determined at optimum moisture content using modified compaction test, and direct-arrival method is used for the field measurements during construction, which is simple and reliable enough for practice engineers to access. This direct-arrival method is well-suited for such a shallow and homogeneous fill lift in terms of applicability and cost effectiveness. The sensitivity of direct-arrival test results according to the compaction quality was demonstrated at a test site, and it was concluded that compressional wave velocity can be effectively used as quality control measure. The experimental background far the companion study (Park et al., 2009) was established through field and laboratory measurements of the compressional wave velocity.

Reliability estimation about quality assurance method of radiotherapy planning (방사선치료계획 정도관리 방법에 따른 신뢰도 평가)

  • Kim, Jeong-Ho;Kim, Gha-Jung;Yoo, Se-Jong;Kim, Ki-Jin
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.119-124
    • /
    • 2015
  • According as radiation therapy technique develops, standardization of radiation therapy has been complicated by the plan QA(Quality Assurance). However, plan QA tools are two type, OADT (opposite accumulation dose tool) and 3DADT (3 dimensional accumulation dose tool). OADT is not applied to evaluation of beam path. Therefore tolerance error of beam path will establish measurement value at OADT. Plan is six beam path, five irradiation field at each beam path. And beam path error is 0 degree, 0.2 degree, 0.4 degree, 0.6 degree, 0.6 degree, 0.8 degree. Plan QA accomplishes at OADT, 3DADT. The more path error increases, the more plan QA error increases. Tolerance error of OADT path is 0.357 using tolerance error of conventional plan QA. Henceforth plan QA using OADT will include beam path error. In addition, It will increase reliability through precise and various plan technique.

Drag Reduction of NACA0012 Airfoil with a Flexible Micro-riblet (마이크로 리블렛이 부착된 NACA0012 익형의 항력 감소 연구)

  • Jang Young Gil;Lee Sang Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.479-482
    • /
    • 2002
  • Riblets with longitudinal grooves along the streamwise direction have been used as an effective flow control technique for drag reduction. A flexible micro-riblet with v-grooves of peak-to-peak spacing of $300{\mu}m$ was made using a MEMS fabrication process of PDMS replica. The flexible micro-riblet was attached on the whole surface of a NACA0012 airfoil with which grooves are aligned with the streamwise direction. The riblet surface reduces drag coefficient about $7.9{\%}\;at\;U_o=3.3m/s$, however, it increases drag about $8{\%}\;at\;U_o=7.0m/s$, compared with the smooth airfoil without riblets. The near wake has been investigated experimentally far the cases of drag reduction ($U_o\;=\;3.3 m/s$) and drag increase ($U_o\;=\;7 m/s$). Five hundred instantaneous velocity fields were measured for each experimental condition using the cross-correlation PIV velocity field measurement technique. The instantaneous velocity fields were ensemble averaged to get spatial distribution of turbulent statistics such as turbulent kinetic energy. The experimental results were compared with those of a smooth airfoil under the same flow condition. The micro-riblet surface influences the near wake flow structure largely, especially in the region near the body surface

  • PDF

Fabrication and characteristics of vibration sensor using conductive ball (전도성 볼을 이용한 진동센서의 제작 및 특성)

  • Jang, Sung-Wook;Cho, Yong-Soo;Kong, Seong-Ho;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.374-380
    • /
    • 2005
  • Vibration sensors have a wide scope of applications in the field of monitoring systems that needs to perceive an undesirable physical vibration before a critical failure occurs in a system, and then costly unplanned repairs can be avoided. The conventional vibration sensors developed so far have many disadvantages, such as complex manufacturing process, bulkiness, high cost, less reliability and so on. This paper reports a simple-structured vibration sensor, which has been developed using a commercialized conductive ball and silicon bulk-micromachining technology. The sensor consists of a conductive ball placed in $600{\mu}m$-deep micromachined silicon groove, in which Au thin film has been patterned using a shadow mask technique. Prior to the formation of the Au thin film, the sharp convex corner was rounded for smooth meatl deposition on the non-planar surface at the edge of the groove. The measurement results of the fabricated vibration sensor demonstrate a stable response characteristic to low-frequency vibration range ($1{\sim}30{\;}Hz$).

Investigation of the Wing Design and Performance of a Gliding Flying Fish (글라이딩하는 날치의 날개형상 및 성능에 관한 연구)

  • Park, Hyung-Min;Choi, Hea-Cheon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.97-100
    • /
    • 2008
  • Various flyers in nature have attracted great interests with a recent need for developing versatile and small-size flight vehicles. In the present study, we focus on the flying fish which has been observed to glide a long distance just above a seawater surface. Since previous studies have depended on the field observation or measurement of the physical parameters only, quantitative data of the flying fish flight has not been provided so far. Therefore, we evaluate the wing performance of the flying fish in gliding flight by directly measuring the lift, drag and pitching moment on real flying fish models (Cypselurus hiraii) in a wind tunnel. In addition, we investigate the roles of wing morphology like the enlarged pectoral and pelvic fins, and lateral dihedral angle of pectoral fins. With both the pectoral and pelvic fins spread, the lift-to-drag ratio is larger and the longitudinal static stability is enhanced than those with the pelvic fins folded. From the glide polar, we find that the wing performance of flying fish is equivalent to those of medium-size birds like the petrel, hawk and wood duck. Finally, we examine the effect of water surface underneath the flying fish and find that the water surface reduces the drag and increases the lift-to-drag ratio.

  • PDF