• Title/Summary/Keyword: family shuffling.

Search Result 6, Processing Time 0.025 seconds

Enhanced Activity of Cytidine Deaminase by Gene Family Shuffling. (Gene Family Shuffling을 이용한 Cytidine Deaminase 활성 증가)

  • Hong, Sik;Kim, Kyung-Dong;Song, Bang-Ho;Jung, Kyung-Hwa;Kim, Sa-Yeol
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.298-304
    • /
    • 2002
  • A family shuffling associating PCR-based and in vitro recombination and expression in Escherichia coli cdd mutant was carried out. Two cdd genes encoding cytidine deaminases (CDase) from thermophilic Bacillus caldolyticus and B. stearothermophilus were shuffled. Around 150 viable mutant colonies screened on AB minimal medium without uracil by E. coli cdd complementation were selected for cytidine deaminase assay and 4 candidates (SH1067, SH1077, SH1086, and SH1118) were chosen for the detailed study. The nucleotide sequence analyses of 4 selected mutants revealed that they have several point mutations and recombinations. Surprisingly, the SH 1067 showed 770 fold more specific CDase activity at $80^{\circ}C$ than that of T101 from parental B. stearothermophilus.

Molecular Breeding of Genes, Pathways and Genomes by DNA Shuffing

  • Stemmer, Willem P.C.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.3
    • /
    • pp.121-129
    • /
    • 2002
  • Existing methods for optimization of sequences by random mutagenesis generate libraries with a small number of mostly deleterious mutations, resulting in libraries containing a large fraction of non-functional clones that explore only a small part of sequence space. Large numbers of clones need to be screened to find the rare mutants with improvements. Library display formats are useful to screen very large libraries but impose screening limitations that limit the value of this approach for most commercial applications. By contrast, in both classical breeding and in DNA shuffling, natural diversity is permutated by homologous recombination, generating libraries of very high quality, from which improved clones can be identified with a small number of complex screens. Given that this small number of screens can be performed under the conditions of actual use of the product, commercially relevant improvements can be reliably obtained.

Effective Family Shuffling Method Using Complementary DNA Fragments Produced by S1 Nuclease

  • Hong, Soon-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.2004-2007
    • /
    • 2006
  • An efficient method for the in vitro reassembly of homologous DNA sequences is presented. The proposed method involves obtaining single strands of homologous genes and hybridizing them to obtain partially hybridized heteroduplex DNA; cleaving the single-stranded regions of the heteroduplex DNA using S1 nuclease to generate double-strand DNA fragments; denaturing the double-strand DNA fragments to generate single-strand DNA fragments; conducting a series of polymerase chain reactions (PCR) using the single-strand DNA fragments as internal primers and a mixture of homologous DNA as templates to obtain elongated reassembled DNA; and finally, amplifying the reassembled DNA by a PCR using terminal primers. As a result, DNA reassembly could be achieved between homologous genes with a sequence similarity as low as 78%.

DNA Shuffling of aprE Genes to Increase Fibrinolytic Activity and Thermostability

  • Yao, Zhuang;Jeon, Hye Sung;Yoo, Ji Yeon;Kang, Yun Ji;Kim, Min Jae;Kim, Tae Jin;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.800-807
    • /
    • 2022
  • Four aprE genes encoding alkaline serine proteases from B. subtilis strains were used as template genes for family gene shuffling. Shuffled genes obtained by DNase I digestion followed by consecutive primerless and regular PCR reactions were ligated with pHY300PLK, an E. coli-Bacillus shuttle vector. The ligation mixture was introduced into B. subtilis WB600 and one transformant (FSM4) showed higher fibrinolytic activity. DNA sequencing confirmed that the shuffled gene (aprEFSM4) consisted of DNA mostly originated from either aprEJS2 or aprE176 in addition to some DNA from either aprE3-5 or aprESJ4. Mature AprEFSM4 (275 amino acids) was different from mature AprEJS2 in 4 amino acids and mature AprE176 in 2 amino acids. aprEFSM4 was overexpressed in E. coli BL21 (DE3) by using pET26b(+) and recombinant AprEFSM4 was purified. The optimal temperature and pH of AprEFSM4 were similar to those of parental enzymes. However, AprEFM4 showed better thermostability and fibrinogen hydrolytic activity than the parental enzymes. The results indicated that DNA shuffling could be used to improve fibrinolytic enzymes from Bacillus sp. for industrial applications.

Guided Selection of Human Antibody Light Chains against TAG-72 Using a Phage Display Chain Shuffling Approach

  • Kim, Sang-Jick;Hong, Hyo-Jeong
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.572-577
    • /
    • 2007
  • To enhance therapeutic potential of murine monoclonal antibody, humanization by CDR grafting is usually used to reduce immunogenic mouse residues. Most humanized antibodies still have mouse residues critical for antigen binding, but the mouse residues may evoke immune responses in humans. Previously, we constructed a new humanized version (AKA) of mouse CC49 antibody specific for tumor-associated glycoprotein, TAG-72. In this study, to select a completely human antibody light chain against TAG-72, guided selection strategy using phage display was used. The heavy chain variable region (VH) of AKA was used to guide the selection of a human TAG-72-specific light chain variable region (VL) from a human VL repertoire constructed from human PBL. Most of the selected VLs were identified to be originated from the members of the human germline VK1 family, whereas the VL of AKA is more homologous to the VK4 family. Competition binding assay of the selected Fabs with mouse CC49 suggested that the epitopes of the Fabs overlap with that of CC49. In addition, they showed better antigen-binding affinity compared to parental AKA. The selected human VLs may be used to guide the selection of human VHs to get completely human anti-TAG72 antibody.

Enhancement of the solubility of human tissue inhibitor of matrix metallocroteinase-2 (TIMP-2) in E. coli using a modified in vitro mutagenesis (새로운 유전자 재조합 방법을 이용한 대장균에서의 인간 tissue inhibitor of mtrix metalloproteinase-2 (TIMP-2) 유전자의 가용성 발현)

  • Kim, Jong-Uk;Choi, Dong-Soon;Joo, Hyun;Min, Churl-K.
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.231-238
    • /
    • 2008
  • The second family member of tissue inhibitors of matrix metalloproteinases, TIMP-2, is a 21kDa protein which inhibits matrix metalloproteinases 2 (MMP-2). Expression of mammalian proteins in E. coli often forms inclusion bodies that are made up of mis-folded or insoluble protein aggregates. The requirement for the formation of 6 disulfide bonds in the process of the TIMP-2 folding is likely to be incompatible with the reducing environment of E. coli. However, this incompatibility can be often overcome by introducing a mutagenesis that could lead to enhancement of the protein solubility. In this reason, we have attempted to express the soluble TIMP-2 in E. coli by applying a modified staggered extension process (StEP), one of the in vitro PCR-based recombinant mutagenesis methods, and error-prone PCR. C-terminally located CAT fusion protein with respect to mutated TIMP-2 proteins enables us to differentiate the soluble TIMP-2 from the insoluble in E. coli by virtue of chloramphenicol resistance. According to this scheme, E. coli harboring properly-folded CAT fused to TIMP-2 protein was selected, and some of the resulting colonies exhibited an enhanced, soluble expression of TIMP-2 compared to the wild type, implying (i) the StEP technique is successfully employed to enhance the proper folding thereby increasing the solubility of TIMP-2, and (ii) the CAT dependent screening may be a simple and effective method to differentiate the soluble protein expression in E. coli.