포트 스캐닝 탐지 시스템은 “False Positive”(실제 공격이 아닌데 공격이라고 탐지, 오탐지)와 “False Negative”(실제 공격인데 공격이 아니라고 탐지, 미탐지)가 낮아야 하는 등의 시스템 성능에 관한 요구사항과, 해당 탐지 시스템을 활용한 보안관리가 용이해야 하는 등의 사용자 친화적인 요구사항을 만족할 필요가 있다. 그러나 공개되어 있는 실시간 스캔 탐지 시스템은 False Positive가 높고 다양한 스캔 기법에 대한 탐지가 잘 이루어지지 않고 있다. 또한 실시간 스캔 탐지 시스템의 대부분이 명령어 기반으로 이루어져 있기 때문에 이률 활용하여 시스템 보안 관리를 수행하는데 많은 어려움이 있다. 따라서 본 논문에서는 새로운 필터 룰 집합의 적용에 의해 포트 스캐닝 기법 기반의 다양한 공격을 탐지 할 수 있고, 공격자의 행동 패턴으로부터 유도된 ABP-Rule의 적용에 의해 False Positive를 최소화할 수 있는 실시간 스캔 탐지 시스템(TkRTSD)을 제안한다. 또한 Tcl/Tk를 이용하여 GUI환경을 구축함으로써 사용자가 쉽게 보안관리를 할 수 있는 사용자 친화적인 탐지 시스템을 제안한다.
The results of empirical researches on the diagnosis of lung cancer are insufficient, so it is limited to objectively judge the clinical possibility and utilization according to the accuracy of diagnosis. Thus, this study retrospectively analyzed the lung cancer diagnostic performance of PET-MRI (Positron Emission Tomography-Magnetic Resonance Imaging) by using the decision matrix. This study selected and experimented total 165 patients who received both hematological CEA (Carcinoembryonic Antigen) test and hybrid PET-MRI (18F-FDG, 5.18 MBq/kg / Body TIM coil. VIVE-Dixon). After setting up the result of CEA (positive:>4 ㎍/ℓ. negative:<2.5㎍/ℓ) as golden data, the lung cancer was found in the image of PET-MRI, and then the SUVmax (positive:>4, negative:<1.5) was measured, and then evaluated the correlation and significance of results of relative diagnostic performance of PET-MRI compared to CEA through the statistical verification (t-test, P>0.05). Through this, the PET-MRI was analyzed as 96.29% of sensitivity, 95.23% of specificity, 3.70% of false negative rate, 4.76% of false positive rate, and 95.75% of accuracy. The false negative rate was 1.06% lower than the false positive rate. The PET-MRI that significant accuracy of diagnosis through high sensitivity and specificity, and low false negative rate and false positive rate of lung cancer, could acquire the fusion image of specialized soft tissue by combining the radio-pharmaceuticals with various sequences, so its clinical value and usefulness are regarded as latently sufficient.
최근 생성형 Artificial Intelligence(이하 AI)와 인공지능에 대한 수요가 높아짐에 따라, 오남용에 대한 심각성이 대두되고 있다. 그러나, 이상행위 탐지를 극대화한 지능형 CCTV는 군과 경찰에서 범죄 예방에 큰 도움이 되고 있다. AI는 인간이 가르쳐준 대로 학습을 수행한 후, 자가 학습을 진행한다. AI는 학습된 결과에 따라 판단을 하기 때문에, 학습 시 특징을 명확하게 이해해야만 한다. 그러나, 인간이 판단하기에도 모호한 이상한 행위와 비정상 행위의 시각적 판단이 어려운 경우가 많다. 이것을 인공지능의 눈으로 학습하기란 매우 어렵고, 학습을 한 결과는 오탐, 미탐 그리고 과탐이 매우 많아진다. 이에 대해 본 논문에서는 AI의 이상한 행위와 비정상 행위의 학습을 명확하게 하기 위한 기준과 방법을 제시하고, 지능형 CCTV의 오탐, 미탐 그리고 과탐에 대한 판단 능력을 최대화 하기 위한 학습 방안을 제시하였다. 본 논문을 통해, 현재 활용 중인 지능형 CCTV의 인공지능 엔진 성능을 극대화가 가능하고, 오탐율과 미탐율의 최소화가 가능할 것으로 기대된다.
One hundred and thirty-nine thyroid nodules were evaluated by aspiration biopsy cytology (ABC) and were compared with the postoperative histologic diagnosis during the period from May 1, 1986 through Aug. 31, 1992. The correlation betwen the two diagnoses proved to be comparable with a low incidence of false-negative diagnoses, but with a relatively high incidence of false-positive ones. The sensitivity was 93.5%, specificity 89.6%, false-negative rate 6.5%, false-positive rate 10.4%, positive predictability 87.9%, negative predictability 94.5%, and overall diagnostic accuracy 91.4%.
To analyze tens of thousands of alarms triggered by the intrusion detections systems (IDS) a day has been very time-consuming, requiring human administrators to stay alert for all time. But most of the alarms triggered by the IDS prove to be the false positives. If alarms could be correctly classified into the false positive and the false negative, then we could alleviate most of the burden of human administrators and manage the IDS far more efficiently. Therefore, we present a new approach based on attribute-oriented induction (AOI) to classify alarms into the false positive and the false negative. The experimental results show the proposed approach performs very well.
Journal of the Korean Association of Oral and Maxillofacial Surgeons
/
제26권6호
/
pp.658-665
/
2000
Purpose : The present study was carried out to determine the diagnostic usefulness of bone scan for evaluating jaw bone extension of oral cancer. Materials and Methods : Medical records, preoperative bone scans, computerized tomographic (CT) scans, conventional radiographs, and findings of histopathologic sections of twenty patients who had been treated for oral malignant tumors by a resection of mandible and soft tissue at Chonnam University Hospital from January, 1994 to September, 1999 were analyzed. Results : In 13 cases which showed histopathologically positive, preoperative bone scans were positive in 12 (92.3%) and false negative in 1 (7.7%). Preoperative CT scans were positive in 9 (69.2%) and false negative in 4 (30.8%) of the 13 cases. Preoperative conventional radiographs were positive in 8 (61.5%) and false negative in 5 (38.5%) of the 13 cases. In 7 cases showing negative histopathologic findings, 1 (14.3%) was in CT scans and 2 (28.6%) were false positive in preoperative conventional radiographs. Conclusion : These results suggest that bone scan is more sensitive and reliable method for evaluating jaw bone extension of oral cancer than conventional radiographs or CT scans.
The epidemic of 2019 novel coronavirus, later named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still gradually spreading worldwide. The nucleic acid test or genetic sequencing serves as the gold standard method for confirmation of infection, yet several recent studies have reported false-negative results of real-time reverse-transcriptase polymerase chain reaction (rRT-PCR). Here, we report two representative false-negative cases and discuss the supplementary role of clinical data with rRT-PCR, including laboratory examination results and computed tomography features. Coinfection with SARS-COV-2 and other viruses has been discussed as well.
화재감지 시스템은 화재발생 시 위험 감지 및 전파를 위해 사용되고 있는데, 현재 사용 중인 대부분의 화재감지 시스템은 실보와 비화재보의 가능성으로부터 오동작이 빈번하게 발생한다. 본 연구에서는 화재감지의 신뢰성 개선을 위해 열 감지기, 연기 감지기 및 일산화탄소 농도 감지기의 3가지 독립정보를 통합적으로 이용하여 화재를 감지하는 알고리즘을 제안하고, LabVIEW를 이용하여 test bed를 구축하여 검증하였다. 즉, NIST의 Fire Research Division에서 제공하는 상황별 센서 측정 데이터를 이용하여 시뮬레이션을 진행하였으며, 실보와 비화재보의 가능성을 저감시키는 것을 확인할 수 있었다.
machine learning 기법 중 하나인 logistic regression을 이용하여 benign sample과 breast cancer sample을 구분할 수 있는데, 이 연구를 통해 classification의 정확도를 높이고 false positive와 false negative의 비율을 줄이려고 했다. 그래서 logistic regression의 parameter 값을 바탕으로 regression function에 영향을 많이 주는 feature 들을 선택하고, 영향력 있는 feature 들을 더한 새로운 feature를 추가했다. 그 결과 정확도와 F-score가 증가했으며, false positive, false negative의 비율이 감소했다.
호스트 기반 침입탐지 기법에는 시스템 호출 순서를 고려하는 방법과 시스템 호출 파라미터를 고려하는 방법이 있다. 이 두 방법은 프로세스의 시스템 호출이 일어나는 전 구간에서 시스템 호출 순서에 이상이 있거나 시스템 호출 파라미터의 순서 및 길이 등에 이상이 있는 경우에 적합하지만 긍정적 결함율과 부정적 결함율이 높은 단점이 있다. 이 논문에서는 시스템 호출을 이용한 방법에서 발생하는 긍정적 결함율과 부정적 결함율을 줄이기 위해서 단위 시간을 도입한 타임 윈도우 기반의 T-N2SCD 탐지 모델을 제안한다. 제안 모델의 실험에 사용된 데이터는 DARPA에서 제공된 데이터이며, 실험 결과 제안 모델은 다른 시간 간격 보다 1000ms 시간 간격으로 실험하였을 경우가 긍정적 결합률과 부정적 결합률이 가장 낮았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.