• Title/Summary/Keyword: false traffic rate

Search Result 54, Processing Time 0.026 seconds

Probability Adjustment Scheme for the Dynamic Filtering in Wireless Sensor Networks Using Fuzzy Logic (무선 센서 네트워크에서 동적 여과를 위한 퍼지 기반 확률 조절 기법)

  • Han, Man-Ho;Lee, Hae-Young;Cho, Tae-Ho
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.159-162
    • /
    • 2008
  • Generally, sensor nodes can be easily compromised and seized by an adversary because sensor nodes are hostile environments after dissemination. An adversary may be various security attacks into the networks using compromised node. False data injection attack using compromised node, it may not only cause false alarms, but also the depletion of the severe amount of energy waste. Dynamic en-route scheme for Filtering False Data Injection (DEF) can detect and drop such forged report during the forwarding process. In this scheme, each forwarding nodes verify reports using a regular probability. In this paper, we propose verification probability adjustment scheme of forwarding nodes though a fuzzy rule-base system for the Dynamic en-route filtering scheme for Filtering False Data Injection in sensor networks. Verification probability determination of forwarding nodes use false traffic rate and distance form source to base station.

  • PDF

Traffic Seasonality aware Threshold Adjustment for Effective Source-side DoS Attack Detection

  • Nguyen, Giang-Truong;Nguyen, Van-Quyet;Nguyen, Sinh-Ngoc;Kim, Kyungbaek
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2651-2673
    • /
    • 2019
  • In order to detect Denial of Service (DoS) attacks, victim-side detection methods are used popularly such as static threshold-based method and machine learning-based method. However, as DoS attacking methods become more sophisticated, these methods reveal some natural disadvantages such as the late detection and the difficulty of tracing back attackers. Recently, in order to mitigate these drawbacks, source-side DoS detection methods have been researched. But, the source-side DoS detection methods have limitations if the volume of attack traffic is relatively very small and it is blended into legitimate traffic. Especially, with the subtle attack traffic, DoS detection methods may suffer from high false positive, considering legitimate traffic as attack traffic. In this paper, we propose an effective source-side DoS detection method with traffic seasonality aware adaptive threshold. The threshold of detecting DoS attack is adjusted adaptively to the fluctuated legitimate traffic in order to detect subtle attack traffic. Moreover, by understanding the seasonality of legitimate traffic, the threshold can be updated more carefully even though subtle attack happens and it helps to achieve low false positive. The extensive evaluation with the real traffic logs presents that the proposed method achieves very high detection rate over 90% with low false positive rate down to 5%.

Efficient Abnormal Traffic Detection Software Architecture for a Seamless Network

  • Lee, Dong-Cheul;Rhee, Byung-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.2
    • /
    • pp.313-329
    • /
    • 2011
  • To provide a seamless network to customers, Internet service providers must promptly detect and control abnormal traffic. One approach is to shorten the traffic information measurement cycle. However, performance degradation is inevitable if traffic measurement servers merely shorten the cycle and measure all traffic. This paper presents a software architecture that can measure traffic more frequently without degrading performance by estimating the level of abnormal traffic. The algorithm in the architecture estimates the values of the interface group objects in MIB by using the IP group objects thereby reducing the number of measurements and the size of measured data. We evaluated this architecture on part of Internet service provider's IP network. When the traffic was measured 5 times more than before, the CPU usage and TPS of the proposed scheme was 7% and 41% less than that of the original scheme while the false positive rate and false negative rate were 3.2% and 2.7% respectively.

Design of Web based ID Traffic Analysis System (웹기반의 침입탐지 트래픽 분석 시스템 설계)

  • 한순재;오창석
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.11a
    • /
    • pp.144-148
    • /
    • 2003
  • A general administrator's response ability plunged in confusion as intrusion detection system like an existing Snort display much alert messages on administrator's screen. Also, there are some possibilities to cause false positive. In this paper, to solve these problems, we designed Web-based ID(Intrusion Detection) traffic analysis system using correlation, and implemented so that administrator can check easily whole intrusion traffic state in web which dividing into normal and intrusion traffic using Libpcap, Snort, ACID, Nmap and Nessus. As a simulation result, it is proved that alert message number and false positive rate are minimized.

  • PDF

Performance Analysis of DoS/DDoS Attack Detection Algorithms using Different False Alarm Rates (False Alarm Rate 변화에 따른 DoS/DDoS 탐지 알고리즘의 성능 분석)

  • Jang, Beom-Soo;Lee, Joo-Young;Jung, Jae-Il
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.139-149
    • /
    • 2010
  • Internet was designed for network scalability and best-effort service which makes all hosts connected to Internet to be vulnerable against attack. Many papers have been proposed about attack detection algorithms against the attack using IP spoofing and DoS/DDoS attack. Purpose of DoS/DDoS attack is achieved in short period after the attack begins. Therefore, DoS/DDoS attack should be detected as soon as possible. Attack detection algorithms using false alarm rates consist of the false negative rate and the false positive rate. Moreover, they are important metrics to evaluate the attack detections. In this paper, we analyze the performance of the attack detection algorithms using the impact of false negative rate and false positive rate variation to the normal traffic and the attack traffic by simulations. As the result of this, we find that the number of passed attack packets is in the proportion to the false negative rate and the number of passed normal packets is in the inverse proportion to the false positive rate. We also analyze the limits of attack detection due to the relation between the false negative rate and the false positive rate. Finally, we propose a solution to minimize the limits of attack detection algorithms by defining the network state using the ratio between the number of packets classified as attack packets and the number of packets classified as normal packets. We find the performance of attack detection algorithm is improved by passing the packets classified as attacks.

The Design and Implementation of Anomaly Traffic Analysis System using Data Mining

  • Lee, Se-Yul;Cho, Sang-Yeop;Kim, Yong-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.316-321
    • /
    • 2008
  • Advanced computer network technology enables computers to be connected in an open network environment. Despite the growing numbers of security threats to networks, most intrusion detection identifies security attacks mainly by detecting misuse using a set of rules based on past hacking patterns. This pattern matching has a high rate of false positives and can not detect new hacking patterns, which makes it vulnerable to previously unidentified attack patterns and variations in attack and increases false negatives. Intrusion detection and analysis technologies are thus required. This paper investigates the asymmetric costs of false errors to enhance the performances the detection systems. The proposed method utilizes the network model to consider the cost ratio of false errors. By comparing false positive errors with false negative errors, this scheme achieved better performance on the view point of both security and system performance objectives. The results of our empirical experiment show that the network model provides high accuracy in detection. In addition, the simulation results show that effectiveness of anomaly traffic detection is enhanced by considering the costs of false errors.

Design and Theoretical Analysis of a Stepwise Intrusion Prevention Scheme (단계적 비정상 트래픽 대응 기법 설계 및 이론적 분석)

  • Ko Kwangsun;Kang Yong-hyeog;Eom Young Ik
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.1
    • /
    • pp.55-63
    • /
    • 2006
  • Recently, there is much abnormal traffic driven by several worms, such as Nimda, Code Red, SQL Stammer, and so on, making badly severe damage to networks. Meanwhile, diverse prevention schemes for defeating abnormal traffic have been studied in the academic and commercial worlds. In this paper, we present the structure of a stepwise intrusion prevention system that is designed with the feature of putting limitation on the network bandwidth of each network traffic and dropping abnormal traffic, and then compare the proposed scheme with a pre-existing scheme, which is a True/False based an anomaly prevention scheme for several worm-patterns. There are two criteria for comparison of the schemes, which are Normal Traffic Rate (NTR) and False Positive Rate (FPR). Assuming that the abnormal traffic rate of a specific network is $\beta$ during a predefined time window, it is known that the average NTR of our stepwise intrusion prevention scheme increases by the factor of (1+$\beta$)/2 than that of True/False based anomaly prevention scheme and the average FPR of our scheme decrease by the factor of (1+$\beta$)/2.

An Automatic Portscan Detection System with Adaptive Threshold Setting

  • Kim, Sang-Kon;Lee, Seung-Ho;Seo, Seung-Woo
    • Journal of Communications and Networks
    • /
    • v.12 no.1
    • /
    • pp.74-85
    • /
    • 2010
  • For the purpose of compromising hosts, attackers including infected hosts initially perform a portscan using IP addresses in order to find vulnerable hosts. Considerable research related to portscan detection has been done and many algorithms have been proposed and implemented in the network intrusion detection system (NIDS). In order to distinguish portscanners from remote hosts, most portscan detection algorithms use a fixed threshold that is manually managed by the network manager. Because the threshold is a constant, even though the network environment or the characteristics of traffic can change, many false positives and false negatives are generated by NIDS. This reduces the efficiency of NIDS and imposes a high processing burden on a network management system (NMS). In this paper, in order to address this problem, we propose an automatic portscan detection system using an fast increase slow decrease (FISD) scheme, that will automatically and adaptively set the threshold based on statistical data for traffic during prior time periods. In particular, we focus on reducing false positives rather than false negatives, while the threshold is adaptively set within a range between minimum and maximum values. We also propose a new portscan detection algorithm, rate of increase in the number of failed connection request (RINF), which is much more suitable for our system and shows better performance than other existing algorithms. In terms of the implementation, we compare our scheme with other two simple threshold estimation methods for an adaptive threshold setting scheme. Also, we compare our detection algorithm with other three existing approaches for portscan detection using a real traffic trace. In summary, we show that FISD results in less false positives than other schemes and RINF can fast and accurately detect portscanners. We also show that the proposed system, including our scheme and algorithm, provides good performance in terms of the rate of false positives.

Anomaly Detection Scheme of Web-based attacks by applying HMM to HTTP Outbound Traffic (HTTP Outbound Traffic에 HMM을 적용한 웹 공격의 비정상 행위 탐지 기법)

  • Choi, Byung-Ha;Choi, Sung-Kyo;Cho, Kyung-San
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.5
    • /
    • pp.33-40
    • /
    • 2012
  • In this paper we propose an anomaly detection scheme to detect new attack paths or new attack methods without false positives by monitoring HTTP Outbound Traffic after efficient training. Our proposed scheme detects web-based attacks by comparing tags or javascripts of HTTP Outbound Traffic with normal behavioral models which apply HMM(Hidden Markov Model). Through the verification analysis under the real-attacked environment, we show that our scheme has superior detection capability of 0.0001% false positive and 96% detection rate.

Assessment of Wavelet Technique Applied to Incident Detection - Case of Seoul Urban Freeway (Naebusunhwallo) - (돌발상황 검지를 위한 Wavelet 기법의 적용성 평가 - 서울특별시 도시고속도로를 중심으로 -)

  • Kim, Dong Sun;Baek, Joo Hyun;Song, Ki Han;Rhee, Sung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.581-586
    • /
    • 2006
  • Incidents, which is unexpected unusual events such as traffic accidents, have increased on the most roads in Korea. The obstruction of a fluent traffic flow occurred by incidents causes the traffic congestion and decreases the capacity. The Wavelet technique was applied to detect the road section and the happening time of incidents on urban freeways in this study, and this technique has been widely used in many engineering fields such as an electrical engineering, etc. The availability and validity of the Wavelet technique to the detection of incidents was examined by the occupancy rate, the important element of traffic flows, which is extracted from the data of detectors installed on Seoul Urban freeways. Then, this result is compared to the California Algorithm and the Low-Pass Filtering Algorithm among basic present detection algorithms, which are based on the occupancy rate. As a result, the false alarm rate of this method was similar as that of the California algorithm and the Low-Pass Filtering algorithm, but the detection rate is higher.