• Title/Summary/Keyword: false signal

Search Result 277, Processing Time 0.027 seconds

A Case Study of the Characteristics of Fire-Detection Signals of IoT-based Fire-Detection System (사례 분석을 통한 IoT 기반 화재탐지시스템의 화재 감지신호 특성)

  • Park, Seung Hwan;Kim, Doo Hyun;Kim, Sung Chul
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.3
    • /
    • pp.16-23
    • /
    • 2022
  • This study aims to provide a fundamental material for identifying fire and no-fire signals using the detection signal characteristics of IoT-based fire-detection systems. Unlike analog automatic fire-detection equipment, IoT-based fire-detection systems employ wireless digital communication and are connected to a server. If a detection signal exceeds a threshold value, the measured values are saved to a server within seconds. This study was conducted with the detection data saved from seven fire accidents that took place in traditional markets from 2020 to 2021, in addition to 233 fire alarm data that have been saved in the K institute from 2016 to 2020. The saved values demonstrated variable and continuous VC-Signals. Additionally, we discovered that the detection signals of two fire accidents in the K institution had a VC-Signal. In the 233 fire alarms that took place over the span of 5 years, 31% of smoke alarms and 30% of temperature alarms demonstrated a VC-Signal. Therefore, if we selectively recognize VC-Signals as fire signals, we can reduce about 70% of false alarms.

A Study on Loose Part Monitoring System in Nuclear Power Plant Based on Neural Network

  • Kim, Jung-Soo;Hwang, In-Koo;Kim, Jung-Tak;Moon, Byung-Soo;Lyou, Joon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.95-99
    • /
    • 2002
  • The Loose Part Monitoring System(LPMS) has been designed to detect. locate and evaluate detached or loosened parts and foreign objects in the reactor coolant system. In this paper, at first, we presents an application of the back propagation neural network. At the preprocessing step, the moving window average filter is adopted to reject the reject the low frequency background noise components. And then, extracting the acoustic signature such as Starting point of impact signal. Rising time. Half period. and Global time, they are used as the inputs to neural network . Secondly, we applied the neural network algorithm to LPMS in order to estimate the mass of loose parts. We trained the impact test data of YGN3 using the backpropagation method. The input parameter for training is Rising clime. Half Period amplitude. The result shored that the neural network would be applied to LPMS. Also, applying the neural network to thin practical false alarm data during startup and impact test signal at nuclear power plant, the false alarms are reduced effectively.

A Quantitative Vigilance Measuring Model by Fuzzy Sets Theory in Unlimited Monitoring Task

  • Liu, Cheng-Li;Uang, Shiaw-Tsyr;Su, Kuo-Wei
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.2
    • /
    • pp.176-183
    • /
    • 2005
  • The theory of signal detection has been applied to a wide range of practical situation for a long time, including sonar detection, air traffic control and so on. In general, in this theory, sensitivity parametric index d' and bias parametric index $\beta$ are used to evaluated the performance of vigilance. These indices use observer's response "hit" and "false alarm" to explain and evaluate vigilance, but not considering reaction time. However, the reaction time of detecting should be considered in measuring vigilance in some supervisory tasks such as unlimited monitoring tasks (e.g., supervisors in nuclear plant). There are some researchers have used the segments of reaction time to generate a pair of probabilities of hit and false alarm probabilities and plot the receiver operating characteristic curve. The purpose of this study was to develop a quantitative vigilance-measuring model by fuzzy sets, which combined the concepts of hit, false alarm and reaction time. The model extends two-values logic to multi-values logic by membership functions of fuzzy sets. A simulated experiment of monitoring task in nuclear plant was carried out. Results indicated that the new vigilance-measuring model is more efficient than traditional indices; the characteristics of vigilance would be realized more clearly in unlimited monitoring task.

Development of a Model-Based Motor Fault Detection System Using Vibration Signal (진동 신호 이용 모델 기반 모터 결함 검출 시스템 개발)

  • ;A.G. Parlos
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.874-882
    • /
    • 2003
  • The condition assessment of engineering systems has increased in importance because the manpower needed to operate and supervise various plants has been reduced. Especially, induction motors are at the core of most engineering processes, and there is an indispensable need to monitor their health and performance. So detection and diagnosis of motor faults is a base to improve efficiency of the industrial plant. In this paper, a model-based fault detection system is developed for induction motors, using steady state vibration signals. Early various fault detection systems using vibration signals are a trivial method and those methods are prone to have missed fault or false alarms. The suggested motor fault detection system was developed using a model-based reference value. The stationary signal had been extracted from the non-stationary signal using a data segmentation method. The signal processing method applied in this research is FFT. A reference model with spectra signal is developed and then the residuals of the vibration signal are generated. The ratio of RMS values of vibration residuals is proposed as a fault indicator for detecting faults. The developed fault detection system is tested on 800 hp motor and it is shown to be effective for detecting faults in the air-gap eccentricities and broken rotor bars. The suggested system is shown to be effective for reducing missed faults and false alarms. Moreover, the suggested system has advantages in the automation of fault detection algorithms in a random signal system, and the reference model is not complicated.

An Economic Design of the Chart with Variable Sample Size Scheme

  • Park, Chang-Soon;Ji, Seon-Su
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.2
    • /
    • pp.403-420
    • /
    • 1994
  • An economic design of the $\bar{X}-R$ chart using variable sample size (VSS) scheme is proposed in this paper. In this design the sample size at each sampling time changes according to the values of the previous two sample statistics, sample mean and range. The VSS scheme uses large sample if the sample statistics appear near inside the control limits and smaller sample otherwise. The set of process parameters, such as the sampling interval, control limits and the sample sizes, are chosen to minimize the expected cost per hour. The efficiency of the VSS scheme is compared to the fixed sample size one for cases where there is multiple of assignable causes. Percent reductions of the expected cost in the VSS design are calculated for some given sets of cost parameters. It is shown that the VSS scheme improves the confidence of the procedure and performs statistically better in terms of the number of false alarms and the average time to signal, respectively.

  • PDF

Optical HPEJTC system for removing false alarm and missing in the multitarget correlation (다중 표적 상관에 기인한 상관오류와 유실 제거를 위한 광 HPEJTC 시스템)

  • 이상이;류충상;김은수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.3
    • /
    • pp.58-67
    • /
    • 1995
  • In this paper, we present a new HPEJTC system which is capable of real-time multi-target recognition and tracking with better discrimination by extracting the phase signal of reference function from the JTPS of the conventional optical JTC retaining the amplitude signal of the input function. In order to test the correlation discrimination performance of the HPEJTC system, some experiments are carried out on the scenarios susceptible to the false alarms and missing in which many similar targets are periodically loacted. And, the proposed HPEJTC is analyzed to be the real function version of the POF and finally the possibility of the real-time implementation of the POF is suggested, because it can be implemented by using spatial light modulator, CCD detector and some other optical components.

  • PDF

Spatio-Temporal Searcher Structure of Adaptive Array Antenna System for 3rd Generation, W-CDMA Systems (3세대 W-CDMA 시스템에 적용 가능한 적응형 어레이 안테나 시스템을 위한 공-시간 탐색기 구조)

  • 김정호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10A
    • /
    • pp.775-779
    • /
    • 2003
  • A spatio-temporal searcher structure for 3rd generation W-CDMA systems is proposed to enhance the detection capability of the multi-path searcher for the desired signal. This searcher employs the spatio-temporal signal structure to search for newly emerging multipath signals. The proposed multi-path searcher provides better detection capability andthus reduces the mean acquisition time. The detection and false alarm probabilities of new and conventional schemes are calculated and numerical examples of mean acquisition time are given thereafter.

A Color Video Flame Detection Method based on Wavelet Transform to Remove Flickering Non-Flame Detection (점멸성 비화염 검출을 제거하는 웨이블릿변환 기반의 컬러영상 화염 검출 방법)

  • Sanjeewa, Nuwan;Lee, Hyun-Sul;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.89-94
    • /
    • 2013
  • This paper presents color video flame detection algorithm based on wavelet transform to remove detection of flickering non-flame objects. Conventional flame detection algorithms consist of simple or mixed functions using colors, temporal and spatial characteristics. But those algorithms detect non-flame objects as flame regions sometimes. False alarm reasons are flame-like objects with regular flickering lights such as car signal lamps, alarm lights etc. The proposed algorithm is to reduce false detection which is occurred in periodic flickering lights. At first, It segments the candidate flame regions by using frame difference, flame colors. Then it distinguish flame regions and non flame regions including flickering car lights by analyzing wavelet coefficients. Computer simulation results showed that the proposed algorithm removes false detection due to the periodic flickering lamps by performing 97.9% of correct detection rate while false detection rate is 7.3%.

Prediction of Centerlane Violation for vehicle in opposite direction using Fuzzy Logic and Interacting Multiple Model (퍼지 논리와 Interacting Multiple Model (IMM)을 통한 잡음환경에서의 맞은편 차량의 중앙선 침범 예측)

  • Kim, Beomseong;Choi, Baehoon;An, Jhonghyen;Lee, Heejin;Kim, Euntai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.444-450
    • /
    • 2013
  • For intelligent vehicle technology, it is very important to recognize the states of around vehicles and assess the collision risk for safety driving of the vehicle. Specifically, it is very fatal the collision with the vehicle coming from opposite direction. In this paper, a centerlane violation prediction method is proposed. Only radar signal based prediction makes lots of false alarm cause of measurement noise and the false alarm can make more danger situation than the non-prediction situation. We proposed the novel prediction method using IMM algorithm and fuzzy logic to increase accuracy and get rid of false positive. Fuzzy logic adjusts the radar signal and the IMM algorithm appropriately. It is verified by the computer simulation that shows stable prediction result and fewer number of false alarm.

An Adaptive Person/Vehicle Detection Algorithm for PIR Sensor (적외선 센서 기반의 사람/차량 탐지 적응 알고리즘)

  • Kim, Young-Man;Park, Jang-Ho;Kim, Li-Hyung;Park, Hong-Jae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.8
    • /
    • pp.577-581
    • /
    • 2009
  • Recently, various new services based on ubiquitous computing and networking have been developed. In this paper, we contrive Adaptive PIR(Pyroelectric Infrared Radiation) Detection Algorithm (APIDA), a PIR-sensor based digital signal processing algorithm, that detects the movement of an invading object by the recognition of heat change in the detection area, since the object like person or car emits heat(i.e., infrared radition), We devised APIDA as a highly reliable signal processing algorithm that increases the successful detection rate and decreases the false alarm rate in the intruding object detection. According to performance evaluation experiment, APIDA shows the successful detection rate of 90% and low false alarm in the plain area.