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ABSTRACT

An economic design of the X-R chart using variable sample size
(VSS) scheme is proposed in this paper. In this design the sample size
at each sampling time changes according to the values of the previous
two sample statistics, sample mean and range. The VSS scheme uses
large sample if the sample statistics appear near inside the control limits
and smaller sample otherwise. The set of process parameters, such as
the sampling interval, control limits and the sample sizes, are chosen to
minimize the expected cost per hour.

The efficiency of the VSS scheme is compared to the fixed sample
size one for cases where there is multiple of assignable causes. Percent
reductions of the expected cost in the VSS design are calculated for
some given sets of cost parameters. It is shown that the VSS scheme
is economically better than the fixed sample size scheme in terms of
the expected cost per hour. Also it is shown that the VSS scheme im-
proves the confidence of the procedure and performs statistically better
in terms of the number of false alarms and the average time to signal,
respectively.
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1. INTRODUCTION

Control charts have been widely used in monitoring shifts in quality char-
acteristics that cause deterioration in the quality of the productions. When
the mean and the variance are to be monitored simultaneously, the simple X-R
chart 1s used as a standard.

The X-R chart is used by plotting the mean and range of the sample taken
from the process in time order on the chart. The procedure of the chart is to
give an out-of-signal if a sample mean and/or a sample range falls outside the
control limits. The traditional sampling scheme with respect to the sample
size 1s to take samples of fixed size which is called the fixed sample size(FSS)
chart.

Recently the scheme of varying the sample size during the operation of the
chart is introduced by Sawalapurkar et al(1990) and Park and Reynolds(1994).
The chart in which the sample size is varied is called the variable sample
size(VSS) chart. The idea is to use a large size for the next sample if the
sample statistics used in the chart appear near inside the control limits and a
small size otherwise to improve the efficiency of the chart. In designing a chart,
the sample size, the sampling interval, and the control limits must be specified.
An approach in specifying these process parameters in the economic design of
the control chart was developed by Duncan(1956). Since Duncan, the economic
design approach has been studied by many others such as Montgomery(1980),
Lorenzen and Vance(1980) and Saniga(1989).

Park and Reynolds(1994) proposed the economic design of the X chart with
VSS scheme. Comparing the VSS scheme to the FSS, it was shown that the
V5SS scheme shows considerably better economical and statistical performances

when only two sample sizes are used.
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The purpose of this paper is to extend the application of the VSS scheme
to the economic design of the X-R chart. The effectiveness of the VSS X-R
chart will be evaluated by comparing to the FSS X-R chart in terms of the

economical and statistical performances.

2. THE VSS X-R CHART

Consider a process in which the distribution of the observations is normal
with mean g and variance 0%, and the objective is to detect shifts in 4 and o?
from target values g, and variance ¢, respectively. Let 6; = (4 — p,)/0, and
6, = o /0, be the deviations of y and ¢ from p, and o2, respectively. Suppose
that a sample of variable size is taken at every h hour of operation.

Let N, be the size of the sample taken at k** sampling time. Also let X
and Ry be the mean and range of the k' sample, respectively. Then VSS
X-R chart is maintained by plotting the standardized sample mean S, =
\/M(Xk — it,)/ 0, and sample range S; 1 = Ry /o, at each time k on the chart
with control limits {1 for S and I, for Sy k. In the VSS scheme, the sample
size N is determined by the previous sample statistics Sy x—1 and Sy x_1. Let
the region {(z,y);—h < z < 11,0 < y < [} be partitioned into n regions
Ii,---, 1, such that

N =mn; if (Sl,k—1752,k—1) el;, j=12,---,n,

where n; < ny < --- < n,. The boundary points for (S1 -1, S2.k-1) between
the regions are denoted as (i1, la1), (£li2,ls2), ..., (£liy, loy) where L, =
Iy, ly, = l;. The partition of the region and the corresponding sample size are
shown in Figure 1.

Since there is no sample before the first sampling time it would be reason-
able to always take the size of the first sample Ny = n,, the largest sample
size. Note that the standard FSS scheme with sample size n is equivalent to

the VSS scheme with ny = --- =n, =n.
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The sequence of pairs of the statistics {(Sl,k,Sgyk),k > 1} generates a
Markov chain according to the sample size with the transient state transition
matrix

Q = [gilnxn,
where ¢;; = P[(Sl,k, Sok) € I; | Ny = ni].

The pair of statistics (Syx, S24) falling outside the control limits corre-
sponds to an absorbing state of the Markov chain. Let {Z;,k > 1} be a
sequence of iid standard normal random variables and {Ri(ni),k > 1} be a
sequence of ranges Rj from the k-th sample of size n;,. Then the transition

probability ¢;; is expressed by using the independency of Sikx and Sz 4 as the
following. For k > 1, 1 <4,5 <1,

qi; = P[(Sm, Sax) € I; | Ny = ni] (2.1)
= {@(1;/82 = ib1) = B(—1j /6, — /i) W, (1 /62)
- {‘I’(llj—l/52 — Vb)) — ©(—=l;_1/6, — \/551)}‘1’71.'(12;‘/52)7

where l1g = I3 = 0, and ®(-) and ¥, (-) denote the distribution function of the
standard normal random variable and Ry(n;)/o, respectively. An algorithm
for calculation of ¥, (-) was proposed by Pearson and Hartley(1942). Note

that when the process is in control(i.e. §; =0, 6, = 1), gi; reduces to

@5 = {8(1) = S(—11)} W (1) = {@(~lijma) = B(=l1,m) W, (1), (2.2)

3. AN ECONOMIC DESIGN OF THE VSS X-R
CHART

Suppose that the process starts initially in the in-control state and then the
process goes to an out-of-control state due to the occurrence of one of possible

assignable causes. The occurrence of the assignable cause A;; produces the
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process mean and standard deviation as po+61;00 and é2500(zr = 1,...,my, j =
1,...,my, except 2 =j = 1), respectively. For convenience, we use ), as
thesumforz=1,...,myand 3y =1,...,m, except ¢ =7 = 1 throughout the
paper.

We assume that the times until the occurrences of the assignable causes
are independent exponential random variables where the mean time for the
occurrence of A;; is 1/A;;, et =1,...,my, 7 =1,...,m,, except ¢ =7 = 1.
Then the time at which the process goes to an out-of-control state is dis-
tributed as the minimum of m(= mym, — 1) independent exponentials, and
follows an exponential distribution with mean 1/A where A = 3, A;;. We also
assume that once an assignable cause has occurred, the process is free from
the other assignable causes until after the current assignable cause is detected
and removed. The use of the exponential as an in-control time distribution
was justified by McWilliams(1989). He showed that the economic design is

407

quite insensitive to different types of in-control time distributions such as the.

Weibull.

The operation of the process can be viewed as a series of cycles where a
cycle consists of a period of the in-control state followed by a period of an
out-of-control state. During the in-control period the control chart may give
some number of signals, which we call false alarms.

Due to administrative convenience it is not desirable to use many number
of sample sizes in the VSS scheme. Thus we consider only two sample size(i.e.
n =2, n; < ny) and always use the large sample size at the beginning of a
cycle and right after each false alarm.

Let Sp and Op be the number of samples and observations taken during
the in-control period, respectively. Then the average number of samples in
control(ANSC) and the average number of observations in control( ANOC)
taken during the in-control period are obtained in Appendix A.1 as

e—/\h

L— e , (3.1)
E(Op) = e 1 0](J — e Py 'n

E(So) =
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run l—pn

where n' = (nq,n2) and Py = [ ,
pa1 1L —pn

] in which pjy = ¢;1(2 = 1,2) when
the process is in control.
The average number of false alarms(ANFA) is obtained as

1
(1017 = Q'L

where (Jo denotes the transition matrix Q when the process is in control and

E(So) (3.2)

1"=(11). Let S;; and O;; be the number of samples and observations, respec-
tively, taken when the process is out of control due to assignable cause A;;.
Then the average number of samples to signal(ANSS) and average number
of observations to signal(ANOS) after the occurrence of A;; are obtained in

Appendix A.2 as

E(Siy) = [L0][T+e™(I = B)(I — e Po)7|(1 - Qij)7'L
, (3.3)
E(0;) = [LO][1 4+ e™M(I = Po)(I — e ™ Po)|(1 - Qi) "'n
where ();; denotes the transition matrix Q when the process is out of control
due to A;j.
It was shown by Duncan(1971) that the average time of occurrence of the

assignable cause A;; within the interval is

1 - (l + )\ijh)e"\”h
Ty =
! Aij(1 — ek

(3.4)

Thus the average time until the chart gives an out-of-control signal after its

occurrence 1s

Bij = hE(SU) — Tij. (35)
The expected length of a cycle is the expected time until an assignable cause
occurs, 1/, plus the expected time until the chart gives an out-of-control signal
after its occurrence. The conditional probability of A;; given the occurrence
of an assignable cause is A;;/A. Thus the expected length of a cycle is
Yij A (LA + By) 145, MiByj
A N A '

(3.6)
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Let M;; be the cost per hour due to operating under the assignable cause
A;;. Then the expected cost per cycle due to operating out of control is
Ly = Bij M/ (3.7)
iy
If T is the cost for a false alarm, the expected cost for false alarms per

cycle is
1

[LOJ(I = Qo)L

Let W;; be the cost for discovering the assignable cause A;;, then the ex-

Ly = TE(S,)

(3.8)

pected cost for discovering an assignable cause 1s
Ly =) Wikj/A (3.9)
ij
Let ANSS* and ANOS* be the ANSS and ANOS, respectively, when the
process is out of control due to any of the assignable causes. Then
ANSS* =Y E(Si)Ai/A
? . (3.10)
ANOS* =Y E(045)Xij /A
tj

Suppose that the cost for taking a sample of size n be linear in the sample
size , that is a; + aon for given constants a; > 0,a, > 0. We denote that a, 1s
the cost for a sample and a; is the cost for an observation. Then the expected

total cost per cycle for sampling is

Summing the various expected costs, we have the expected cost per hour as

__L1+L2+L3+L4

L= .
(1435 M Bij) /A

(3.12)
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4. COMPARISON OF VSS TO FSS

In this section, two types of sampling schemes VSS and FSS are compared
in terms of the expected cost per hour. In the FSS scheme the expected cost per
hour can be obtained by letting ny = ny, = n in (3.12). Notice that if n; = n,
then l1; and I3 are of no use. In each scheme the .optimal process parameters
are obtained and the resulting expected costs per hour are compared.

We consider m; = 4 and my = 3 number of shifts in the mean and variance
and let 6,; and 6y; be the corresponding values of §; and by, where 6y; =1 — 1
and b63; = j,i = 1,...,4,5 = 1,...,3. Let s(é1;,62;) be the resulting increase

in the percent of product outside of specification limits at 30, from uo, that is

(615, 62;) = [1 - @{(3 — 611)/62; ] + ®{(-3 - 610) /82, } — 2{1 - ®(3)}. (4.1)

Now we consider new shifts in the mean, 65, & = 1,...,11, which gives the
same amount of the resulting increase when o = oy as s(61;, 63;). Then 6},
(614, 02;) and s(6y;, 82;) are listed in Table 1.

For each (7,7) except for i = j = 1 the parameters \;; is chosen to be
proportional to (1/2)e™%/% where k and 67 are the values in Table 1 corre-
sponding to the given (z,7) and (61;,8,;). A is set to be 0.01, 0.005, or 0.001.
For each (7,7) the cost M;; is chosen to be proportional to 5(614,625). The
cost for a false alarm T is set to be 50, 100, 200 and the Wi,’s are chosen as
Wi, = T - e~% where k is given by (2,7) in Table 1. The cost for a sample
a; is set to be 0 or 1 and the cost for an observation a, is set to be 0.1 or
0.5. For each combination of parameter values, we find ny, ne, hy {1y, Lo, b,
ly; for the VSS chart and n, &, 13, I for the FSS chart which minimize the
expected cost per hour in section 3. In finding the optimal parameters we use a
generalized reduced gradient procedure using finite difference approximations
to the partial derivatives which is explained in detail by Lasdon et al(1978).

The optimal sampling and chart parameters for both the VSS and FSS
charts for the various combinations of the process and cost parameters are given

in Table 2-13. The percent reduction in cost(denoted as %) of the VSS chart
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relative to the FSS chart is also given in the tables. To examine the statistical
performance of the VSS chart, other values such as the ANFA per cycle and
the average time to signal(ATS) after an assignable cause has occurred are also

given in Table 2-13. The ATS is calculated by

ATS = Z(h . E(SU) — Tij)/\ij//\- (4.2)

According to the results in Tables 2-13, the optimal control limits /13 and
ly3 for the VSS chart are always larger than {2 and Il3; for the FSS chart. The
optimal sampling intervals of the VSS chart are always shorter than those of
the F'SS chart, which means that we take samples more often in the VSS chart
than in the FSS chart. The percent reduction in cost range from 2.85 to 25.49.
The larger percent reductions occur where aq, a2, and A are smaller.

In addition, the ANFA as well as the ATS of the VSS chart are always
smaller than those of the FSS chart. Thus we see that the VSS feature improves

the confidence and the statistical performance of the control procedure.

5. CONCLUSIONS AND REMARKS

This paper developed an application of the VSS scheme to the X-R chart
in the context of an economic design model. It was shown that the VSS chart
can be considerably more efficient than the FSS chart in terms of the expected
cost per hour when only two sample sizes are used.

The characteristics of the VSS X-R chart have the same trend as those of
the VSS X-chart from the results of Park and Reynolds(1994) when compared
to the corresponding FSS chart. That is, both VSS charts are optimized by
shorter sampling intervals, and larger control limits than the corresponding
optimal values of the FSS chart. Also both VSS charts have similar amount
of reduction in cost, ANFA’s, and ATS’s.
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APPENDIX

A.1. Proof of (3.1).

Let U be the duration of the in-control state, then U follows an exponential
distribution with mean 1/A. The probability function of Sy is obtained as, for
r=10,1,2,.

P(So=1z) = Plhe <U < h(z+1))

e~ M _ o= Ah(aH1)

Thus

E(So) — Z :L_(e—/\hr _ e—/\h(z-{-l))

z=0
e—)\h

When the process is in control, we divide the space of the sample statistics
(S1.4,S2,k) into two regions Iy, I, where I7 = {(z y):lrz] <lhand 0 <y <
121} and [ = {(x,y) dz] > lyory > 121}. If (S14,524) falls into the region
I3 we use size n, for the next sample, otherwise we use n;. Remember that
we use larger sample after each false alarm.

Now we can think another Markov chain according to the sample size with

the transition matrix Fp. By using the Markov chain property,

3 10P n, ifz>1

, ifz=0

=t

Thus,
E[Oy] = ZZ 1 0)Pip(e e — Mzt

[e.o}

— Z[l O]P(icﬁ Z (e—/\hx _ e—/\h(x+l))
k=0

z=k+1
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— Z[l O]P:ﬂe_)‘h(k+l)

k=0

= 10 i(e_’\hPo)kQ

k=0

= e“’\h[l 0](I — e_)‘hPo)_lﬂ.

A.2. Proof of (3.3).
The conditional probability function of S; given that Sy = y can be ob-

tained as, for z = 1,2, ...,
PlSj=x|So=y] = [Sj>a|So=y|-P[Si>z+1]S% =y
— [10)PYQ'L —[1 0)PYQ5L
= Doy - Qi1

Thus,

Blsi1S=y] = Lol R -1

[ee]

[LO]PY Y =|Q5 " — Q)L

r=1

= [10F(I-Q)7'L

I

Therefore, by using P(So = z) from A.1l.

E[Sj] = i[l 0|5 {[ _ Qj]“ll(e—)\hy )

y=0

T R

y=0

-1

= [LO[I+eMPo— DI —e™P)7|[T-Q)] L
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Similarly,

B0 = L 0|[T + (P — D)1 = e R) ] [1- Q)] .

Figure 1. Partition of the region {(:c,y); —h<z<h O<y< 12} and the
corresponding sample sizes.

So k-1

lan
In nn
1277—1
21
I n ,
I ! L S1,k-1
~liy —=lig—1 =l 0 11 lin—1 iy

Table 1. 6:, (611',62]‘) and .5(511',52]').

(%)) I T (2] 1 (&0 [ (32 [ G2 | 08 [ 3 [ G [ @ T (2 [E3

Gu, be) [ G0 1 (02 [ (20 [(12) [ (22 | (03 | (13 [ (23 | G0 | (33 [ (3:3)
k 1 2 3 4 5 6 7 8 9 10 11
6;: 1.0 1.891 2.0 2.09 2.518 2.525 2.598 2.791 3.0 3.003 3.057

5(61,, 62,]‘) 0.0201 0.1310 0.1560 0.1788 0.3121 0.3147 0.3411 0.4146 0.4974 0.4987 0.520
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Table 2. Optimal process parameters and the corresponding characteristics

for a; = 0.0, a; = 0.1 and T = 50.0.

/\ 71,1(”2) h 111 112 121 122 cost ANSC ANSS ATS
(%) | ANOC | ANOS | ANFA
2(11) | 0.473 | 2.2454 | 3.6409 [ 4.1810 | 5.8654 | 1.11949 | 208.37 | 3.025 1.208
(15.88) | 484.29 | 13.091 | 0.074
0.010 3 0.861 3.22056 5.4209 | 1.33090 | 162.96 | 3.972 2.124
48890 | 11.916 | 0.2688
2(12) | 0.472 | 2.2801 | 3.6705 | 4.2505 | 5.9146 | 1.08085 | 423.20 2.983 | 1.1724
(17.17) | 975.87 | 13.285 | 0.1345
0.005 3 0.605 3.2168 5.4269 | 1.30496 | 329.73 | 3.954 2.092
989.20 | 11.863 | 0.5473
2(12) 0.469 | 2.2786 | 3.6782 | 4.2344 | 5.9225 | 1.04910 | 2130.4 2.987 1.167
(18.27) | 4875.9 | 13.342 | 0.6593
0.001 3 0.600 3.2146 5.4315 | 1.28368 | 1663.7 | 3.943 2.096
4991.1 | 11.831 | 2.7713

* In each cell, upper numbers denote values for the VSS and lower ones for the FSS.

Table 3. Optimal process parameters and the corresponding characteristics
for a; = 0.0, a; = 0.1 and T = 100.0.

A ny (712) h i1 l12 I21 loo cost ANSC ANSS ATS

(%) | ANoc | ANOS | ANFA
2(12) 0.467 | 2.2834 | 3.8378 | 4.2504 | 6.1126 | 1.21350 | 213.54 3.159 1.2423
(18.66) 497.34 | 14.902 | 0.0352
0.010 4 0.732 3.4097 5.7756 | 1.49197 | 135.96 3.512 | 2.2073
543.86 | 14.048 | 0.1233
2(13) 0.460 | 2.3143 | 3.8662 | 4.3117 | 6.1590 | 1.13869 | 433.75 3.109 1.201

(20.47) 1001.3 15.05 0.064
0.005 4 0.724 3.4046 5.7813 | 1.43265 | 275.44 3.491 2.168
1101.7 | 13.965 | 0.2521
2(14) 0.455 | 2.3461 | 3.8903 | 4.3556 | 6.2092 | 1.07799 | 2195.2 3.085 1.177
(22.]1) 5023.4 | 15.262 | 0.2926
0.001 4 0.718 3.4014 5.7855 | 1.38411 | 1390.4 3.478 2.141

5561.7 | 13.915 | 0.2790

Table 4. Optimal process parameters and the corresponding characteristics
for a; = 0.0, a; = 0.1 and T = 200.0.

A ny(nz) h I3 li2 I21 17 cost, ANSC | ANSS ATS
(%) | ANOC | ANOS | ANFA
2(14) 0.454 | 2.3529 | 4.0435 | 4.3807 | 6.3830 | 1.37538 | 219.45 3.230 1.241
(20.05) | 512.17 | 16.814 | 0.015
0.010 4 0.707 3.5531 5.9818 | 1.72043 | 140.87 4.310 2.695
563.48 | 17.242 | 0.0728
2(14) 0.450 | 2.3480 | 4.0525 | 4.3627 | 6.3944 | 1.23017 | 443.70 3.228 1.2280
(22.94) 1024.7 | 16.888 | 0.0305
0.005 5 0.827 3.5845 6.0924 | 1.569639 | 241.21 3.221 2.252
1206.0 { 16.108 | 0.1198
2(15) 0.445 | 2.3763 | 4.0768 | 4.4092 | 6.4373 | 1.11222 | 2246.1 3.199 1.201
(25.49) 5137.8 | 17.062 | 0.1398
0.001 5 0.820 3.5805 6.0965 | 1.49287 | 1218.7 3.207 2.220
6093.6 | 16.037 | 0.6097
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Table 5. Optimal process parameters and the corresponding characteristics
for a; = 0.0, ay = 0.5 and T = 50.0.

A n] (nz) h 11 112 21 laa cost ANSC ANSS ATS

(%) ANOC | ANOS | ANFA
2( 6) 1.182 | 2.0120 | 3.0463 | 3.6951 | 5.0027 | 2.27027 | 84.03 2.808 2.730
(5.21) 191.43 8.512 | 0.2525
0.010 2 1.132 2.8094 4.6421 | 2.39519 87.82 3.587 3.495
. 175.65 7.174 | 0.5256
2(7) 1.156 | 2.0669 | 3.0912 | 3.8242 | 5.0979 | 2.23588 | 172.47 2.733 2.582
( 6.31) 392.92 8.762 0.444
0.005 2 1.114 2.8040 4.6537 | 2.38670 | 178.98 3.566 3.416
357.96 7.132 1.0809
2( 8) 1.134 | 2.1182 | 3.1327 | 3.9280 | 5.1804 | 2.20479 | 881.31 2.689 2.482
( 7.33) 1998.6 9.023 | 1.9673
0.001 2 1.100 2.8004 4.6627 | 2.37929 | 908.11 3.552 3.359
1816.2 7.104 | 5.5163

Table 6. Optimal process parameters and the corresponding characteristics
for a; = 0.0, a; = 0.5 and T = 100.0.

A nl(ng) h I11 I12 Io1 lon cost ANSC ANSS ATS

(%) ANOC | ANOS | ANFA
2( 8) 1.143 | 2.1192 | 3.3068 | 3.9353 | 5.3858 | 2.41374 86.94 2.929 2.778
( 9.05) 202.65 | 10.452 | 0.1067
0.010 2 1.082 2.9811 4.9072 | 2.65396 91.87 4.576 4.412
183.75 | 9.1522 | 0.3114
2( 9) 1.115 | 2.1617 | 3.3474 | 4.0277 | 5.4651 | 2.33917 | 178.72 2.860 2.6344
( 10.80) 202.65 | 10.452 | 0.1067
0.005 2 1.060 2.9745 4.9215 | 2.62236 | 188.03 4.537 4.282
376.07 9.074 0.6454
2(10) 1.093 2.204 | 3.3846 | 4.1009 | 5.5355 | 2.27447 913.9 2.822 2.540
(12.35) 2089.1 | 10.919 | 0.8443
0.001 2 1.044 2.9706 4.9328 | 2.59508 956.8 4.513 4.192
1913.7 9.027 | 3.3082

Table 7. Optimal process parameters and the corresponding characteristics

for ay = 0.0, a; = 0.5 and T = 200.0.

A ni (ng) h l11 l1o Io1 I cost ANSC ANSS ATS

(%) ANOC | ANOS | ANFA
2(10) 1.106 | 2.2146 | 3.5450 | 4.1289 | 5.7189 | 2.61920 89.84 3.022 2.792
(12.28) 212.06 | 12.345 | 0.0461
0.010 3 1.420 3.1826 5.3312 | 2.98591 69.88 3.756 4.626
209.66 | 11.268 | 0.1353
2(11) 1.079 | 2.2464 | 3.5822 | 4.1944 | 5.7890 | 2.47035 | 184.83 2.964 2.6590
(14.56) 430.19 | 12.558 | 0.0823
0.005 3 1.389 3.1720 5.3450 | 2.89151 | 143.44 3.709 4.458
430.33 | 11.127 | 0.2829
2(12) 1.057 | 2.2805 | 3.6161 | 4.2453 | 5.851 2.34436 | 945.00 2.936 2.576
(16.61) 2166.2 | 12.817 | 0.3695
0.001 3 1.366 3.1659 5.3550 | 2.81157 | 731.39 3.683 4.349
2194.1 | 11.049 | 1.4569
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Table 8. Optimal process parameters and the corresponding characteristics
for a; = 1.0, a; = 0.1 and T' = 50.0.

A nl(ng) h lll 112 12] 122 cost ANSC ANSS ATS
(%) | ANOC | ANOS | ANFA
5(13) 1.621 | 2.1498 | 3.3380 | 4.3016 | 5.6509 | 2.1074 61.17 1.545 1.695
(2.96) | 341.26 | 10.836 | 0.1018
0.010 [ 1.684 3.1429 5.4984 | 2.17171 58.86 1.711 2.040
353.20 | 10.268 | 0.1813
5(14) 1.603 | 2.1766 | 3.3468 | 4.3460 | 5.6817 2.078 124.20 1.536 1.662
( 3.31) 688.30 | 10.940 | 0.1970
0.005 6 1.668 3.1343 5.5036 | 2.14929 | 119.39 1.703 2.008
716.35 | 10.222 | 0.3714
5(15) 1.589 | 2.2040 | 3.3595 | 4.3905 | 5.7056 | 2.05353 | 628.78 1.533 1.641
(3.62) | 3456.8 | 11.070 | 0.951
0.001 6 1.655 3.1283 5.5076 | 2.13084 | 603.52 1.698 1.984
3621.1 | 10.190 | 1.889

Table 9. Optimal process parameters and the corresponding characteristics

for a; = 1.0, a; = 0.1 and T = 100.0.

A ni (n2) h l“ [12 121 122 cost ANSC ANSS ATS
(%) | ANOC | ANOS | ANFA
5(15) 1.598 | 2.2165 | 3.533 | 4.3806 | 5.9152 | 2.21067 | 62.05 1.593 1.748
(3.84) | 350.20 | 12.091 | 0.0496
0.010 7 1.734 3.3546 5.8257 | 2.29910 | 57.15 1.728 | 2.1313
400.08 | 12.102 | 0.088
5(16) 1.579 | 2.2314 | 3.5479 | 4.4282 | 5.9359 | 2.14615 | 126.10 1.586 1.716
(4.33) | 704.35 | 12.214 | 0.096
0.005 7 1.716 3.3445 5.8306 | 2.24338 | 116.02 1.719 2.093
812.19 | 12.037 | 0.1811
5(17) 1.564 | 2.2513 | 3.5587 | 4.4640 | 5.9592 | 2.09307 | 638.57 1.582 1.694
(4.76) | 3530.2 | 12.353 | 0.4661
0.001 7 1.702 3.3379 5.8344 | 2.19771 | 536.80 1.713 2.066
4107.6 | 11.995 | 0.9227

Table 10. Optimal process parameters and the corresponding characteristics
for a; = 1.0, ay = 0.1 and T = 200.0.

A nl(ng) h l]l 112 121 122 cost ANSC ANSS ATS
(%) | ANOC | ANOS | ANFA
5(17) 1.576 | 2.2731 | 3.7265 | 4.4622 | 6.1570 | 2.28268 | 62.91 1.640 1.798
(4.62) | 358.15 | 13.425 | 0.0242
0.010 8 1.782 3.5528 6.119 2.4981 55.58 1.749 2.227
444.71 | 13.992 | 0.043
5(18) 1.556 | 2.2822 | 3.7362 | 4.4949 | 6.183 | 2.24867 | 127.99 1.633 | 1.7630
(5.32) | 719.51 | 13.551 | 0.0470
0.005 3 1.762 3.5402 6.123 2.3751 113.60 1.737 2.179
904.01 | 13.896 | 0.0897
6(21) 1.625 | 2.4058 | 3.7883 | 4.7119 | 6.276 2.1383 | 614.58 1.535 1.684
(5.98) | 3978.5 | 14.283 | 0.20238
0.001 8 1.747 3.5328 6.1275 | 2.27445 | 571.88 1.730 2.149
4575.5 | 13.841 | 0.4581




418 ChangSoon Park and SeonSu Ji

Table 11. Optimal process parameters and the corresponding characteristics

for a1 = 1.0, a = 0.5 and T = 50.0.

A nl(ng) h 111 112 121 122 cost, ANSC ANSS ATS
(%) ANOC | ANOS | ANFA
2(6) 1.753 | 1.7739 | 2.8901 | 3.4470 | 4.8591 | 2.95394 | 56.53 2.264 3.093
(2.85) | 140.10 | 7.335 | 0.292
0.010 3 2.014 2.7344 4.6666 [ 3.04065 | 49.13 2.235 3.496

- 147.41 6.706 | 0.4427
2( 6) 1.723 | 1.7535 | 2.8928 | 3.4413 | 4.8791 | 2.93467 | 115.52 2.256 3.028
(3.38) | 284.03 | 7.342 | 0.5887
0.005 3 1.982 2.7250 4.677 | 3.03733 | 100.38 | 2.220 3.410
301.15 6.660 0.914
2(7) 1.685 | 1.8289 | 2.930 | 3.6029 | 4.9773 | 2.9166 592.96 2.225 2.907
(3.86) | 1453.1 | 7.595 | 2.850
0.001 3 1.958 2.7188 4.686 | 3.03385 | 510.22 2.210 3.348
1530.6 | 6.630 | 4.6844

Table 12. Optimal process parameters and the corresponding characteristics

for ay = 1.0, a; = 0.5 and T = 100.0.

A n (TLQ) h 111 l12 I2q 122 cost ANSC ANSS ATS
(%) | ANOC | ANOS | ANFA
2(7) 1.706 | 1.8297 | 3.1229 | 3.5893 | 5.1931 | 3.11926 | 58.11 2.431 3.296
(4.56) | 147.15 | 8.864 | 0.1399
0.010 3 1.958 2.9062 4.9152 | 3.26857 50.55 2.662 4.236
151.66 7.987 0.2592
2( 8) 1.659 | 1.8872 | 3.1578 | 3.7289 | 5.2846 | 3.06231 120.03 2.378 3.117
(5.36) | 301.59 | 9.076 | 0.2536
0.005 4 2.201 2.9691 5.1354 | 3.23593 90.35 2.144 3.620
361.40 8.578 0.414
3(10) 1.930 | 2.1021 | 3.2074 | 4.0571 | 5.3788 | 3.01124 517.39 1.996 2.889
( 6.10) 1746.9 9.491 1.0460
0.001 4 2.172 2.9612 5.1436 | 3.20714 | 459.90 2.132 3.546
1839.6 8.530 2.1272

Table 13. Optimal process parameters and the corresponding characteristics

for ay = 1.0, a; = 0.5 and T = 200.0.

A ny (7).2) h 111 112 121 122 cost ANSC ANSS ATS

(%) | ANOC | ANOS | ANFA
3(10) 1.963 | 2.1211 | 3.3827 | 4.0583 | 5.5802 3.33695 50.43 2.134 3.210
( 5.95) 176.16 | 10.730 | 0.0553
0.010 4 2.190 3.1420 5.3484 | 3.54839 45.15 2.535 4.459
180.61 | 10.143 { 0.1160
3(11) 1.916 | 2.1479 | 3.4094 | 4.1263 | 5.6372 | 3.20558 103.84 2.098 3.0630
(7.29) | 358.24 | 10.877 | 0.1027
0.005 4 2.143 3.1270 5.3611 | 3.45784 92.79 2.503 4.294
371.16 | 10.012 | 0.2436
3(12) 1.831 | 2.1802 | 3.4346 | 4.1802 | 5.6859 3.09318 | 531.11 2.080 2.972
( 8.51) 1805.6 | 11.060 | 0.4774
0.001 4 2.109 3.1187 5.3703 | 3.38103 | 473.49 2.485 4.187
1893.9 9.940 1.2568




An Economic Design of the X-R Chart with VSS Scheme 419

REFERENCES

( 1) Duncan, A.J. (1956). The Economic Design of X-Charts Used to Main-
tain Current Control of a Process. Journal of the American Statistical
Association, 51, 228—-242.

( 2) Duncan, A.J. (1971). The Economic Design of X-Charts When There
Is a Multiplicity of Assignable Causes. Journal of Americian Statistical
Association, 66, 107-121.

( 3) Lasdon, L.S., Waren, A.D., Jain, A., and Ratner, M. (1978). Design and
Testing of a Generalized Reduced Gradient Code for Nonlinear Program-
ming. ACM Transactions on Mathematical Software, 4, 34—50.

( 4) Lorenzen, T.J. and Vance, L.C. (1986). The Economic Design of Control
Charts : A Unified Approach. Technometrics, 28, 3—10.

( 5) McWilliams, T.P. (1989). Economic Control Chart Design and the In-
control Time Distribution : A Sensitivity Study. Journal of Quality
Technology, 12, 7T5—87.

( 6) Montgomery, D.C. (1980). The Economic Design of Control Charts :
A Review and Literature Survey. Journal of Quality Technology, 12,
75—87.

( 7) Park, C. and Reynolds, M.R. Jr. (1994). Economic Design of a Variable
Sample Size X chart. Communications in Statistics : Simulation and
Computation, 23, 2, 467-483.

( 8) Pearson, E.C. and Hartley, H.O. (1942). The Probability Integral of
the Range in Samples of n Observation from a Normal Population.
Biometrika, 32, 301-310.

( 9) Sawalapurkar, U., Reynolds, M.R. Jr., and Arnord, J.C. (1990). Variable
Sample Size X Control Charts, Presented at the Winter Conference of
the American Statistical Association, Orlando, Florida.

(10) Saniga, E.M. (1989). Economic Statistical Control Chart Designs With
an Application to X and R Charts. Technometrics, 31, 313—320.



