• Title/Summary/Keyword: falling weight deflectometer(FWD)

Search Result 47, Processing Time 0.022 seconds

A Case Study for the Estimation of Remaining Lives of Asphalt Pavements (아스팔트포장 잔존수명 예측 사례 연구)

  • Lee, Jung-Hun;Lee, Hyun-Jong;Park, Hee-Mun;Kim, In-Tai
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.1-13
    • /
    • 2008
  • This study presents a case study of condition evaluation of various asphalt pavement sections to estimate performance lives. The pavement surface conditions including cracking and rutting are first evaluated using a automatic pavement analyzer, ARAN. HPCI(Highway Pavement Condition Index) values are estimated using the pavement surface distress data. It is observed from the pavement distress survey that the major distress type of the sections is top-down cracking. The modulus value of each pavement layer is back-calculated from the defection data obtained from a FWD(Falling Weight Deflectometer) and compared with the laboratory measured dynamic modulus values. Remaining lives of the various pavement sections are estimated based on a mechanistic-empirical approach and AAHTO 1993 design guide. The structural capacities of the all pavement sections based on the two approaches are strong enough to maintain the pavement sections for the rest of design life. Since the major distress type is top-down cracking, the remaining lives of the pavement sections are estimated based on HPCI and existing performance database of highway pavements. To evaluate the causes of premature pavement distress, various material properties, such as air void, asphalt binder content, aggregate gradation, dynamic modulus and fatigue resistance, are measured from the field cores. It is impossible to accurately estimate the binder contents of field samples using the ignition method. It is concluded from the laboratory tests that the premature top down cracking is mainly due to insufficient compaction and inadequate aggregate gradation.

  • PDF

Behavior of Continuously Reinforced Concrete Pavement under Moving Vehicle Loads and Effecct of Steel Ratio (이동차량하중에 대한 연속철근콘크리트포장의 거동 및 철근비의 영향)

  • Kim Seong-Min;Cho Byoung-Hooi;Kwon Soon-Min
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.119-130
    • /
    • 2006
  • The behavior of continuously reinforced concrete pavement (CRCP) and the effect of the steel ratio on the behavior under moving wheel loads were investigated in this study. The CRCP sections having different steel ratios of 0.6, 0.7, and 0.8% were considered to evaluate the load transfer efficiency (LTE) at transverse cracks and to investigate the strains in CRCP when the system is subjected to moving vehicle loads. The LTEs were obtained by conducting the falling weight deflectometer (FWD) tests and the tests were performed at three different times of a day to find the curling effect due to the daily temperature changes in CRCP. The strains in the concrete slab and the bond braker layer of the CRCP system under moving vehicle loads were obtained using the embedded strain gages. The results of this study show that the LTEs at transverse cracks are very high and not affected by the time of testing and the steel ratio. The strains in CRCP under vehicle loads become smaller as the vehicle speed increases or as the wandering distance increases; however, the strains are not clearly affected by the steel ratio.

  • PDF

Response of circular footing on dry dense sand to impact load with different embedment depths

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.323-336
    • /
    • 2018
  • Machine foundations with impact loads are common powerful sources of industrial vibrations. These foundations are generally transferring vertical dynamic loads to the soil and generate ground vibrations which may harmfully affect the surrounding structures or buildings. Dynamic effects range from severe trouble of working conditions for some sensitive instruments or devices to visible structural damage. This work includes an experimental study on the behavior of dry dense sand under the action of a single impulsive load. The objective of this research is to predict the dry sand response under impact loads. Emphasis will be made on attenuation of waves induced by impact loads through the soil. The research also includes studying the effect of footing embedment, and footing area on the soil behavior and its dynamic response. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of different soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil in addition to soil pressure gauges. It was concluded that increasing the footing embedment depth results in increase in the amplitude of the force-time history by about 10-30% due to increase in the degree of confinement. This is accompanied by a decrease in the displacement response of the soil by about 40-50% due to increase in the overburden pressure when the embedment depth increased which leads to increasing the stiffness of sandy soil. There is also increase in the natural frequency of the soil-foundation system by about 20-45%. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency. Moreover, the soil density increases with depth because of compaction, which makes the soil behave as a solid medium. Increasing the footing embedment depth results in an increase in the damping ratio by about 50-150% due to the increase of soil density as D/B increases, hence the soil tends to behave as a solid medium which activates both viscous and strain damping.

Performance Evaluation of Asphalt Pavement Reinforced with Glass Fiber Sheet Type of Geosynthetics (유리섬유시트 형태의 토목섬유로 보강된 아스팔트 포장의 공용성 평가)

  • Cho, Sam-Deok;Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.1-8
    • /
    • 2011
  • This paper presents the performance evaluation of asphalt pavement reinforced with fiber sheet type of geosynthetics and observations conducted to evaluate the practical efficiencies and performance of overlay asphalt pavement reinforced with geosynthetics. In this study, performance evaluation were performed for the six section of construction site. The performance indcators of asphalt pavement reinforced with geosynthetics has been collected Automatic Road Analyzer (ARAN), Falling Weight Deflectometer (FWD) and have been analyzed for rutting, cracking ratio, falling weight and international roughness index. As a result of performance evaluations, geosynthetics reinforced asphalt pavement is sigficant effect on increasing a cracking resistance than the non-reinfroced asphalt pavement, also rutting and crak is slowly increase as incerasingly performance period.

Evaluation of Flexible Pavement Layer Moduli Using the Depth Deflectometer and Flexible Pavement Behavior under Various Vehicle Speeds (아스팔트 콘크리트 포장구조체의 내부처짐에 의한 물성추정과 주행속도에 따른 거동분석)

  • Choi, Jun-Seong;Kin, Soo-Il;Yoo, Ji-hyung
    • International Journal of Highway Engineering
    • /
    • v.2 no.1
    • /
    • pp.135-145
    • /
    • 2000
  • A new procedure needs to be developed to predict the dynamic layer properties under moving truck loads. In this study, a computer code to evaluate layer moduli of asphalt concrete pavement from measured interior deflections at various depths were developed and verified from numerical model tests. Interior deflections of the pavement are measured from Multi-Depth Deflectometer(MDD). It was found that errors between the given and backcalculated moduli in numerical analysis were less than 0.32% for several numerical models tested. When impact loads were used, a technique to determine the depth to virtual rigid base was proposed through the analysis of compressive wave velocity and impulse loading durations. It was found that errors between the given and backcalculated moduli in numerical analysis were less than 0.114% when virtual rigid base was considered in numerical analysis. The pavement behavior must be evaluated under various vehicle speeds when determining the dynamic interaction between the loading vehicle and pavement system. To evaluate the dynamic behavior on asphalt concrete pavement under various vehicle speeds, truck moving tests were carried out. From the test results with respect to vehicle speed, it was found that the vehicle speed had significant effect on actual response of the pavement system. The lower vehicle speed generates the higher interior deflections, and the lower dynamic modulus.

  • PDF

Feasibility Study on Calibration Method of Curling Behavior in Jointed Concrete Pavement Using Falling Weight Deflectometer (FWD를 이용한 줄눈 콘크리트포장 컬링거동 보정방법의 타당성 연구)

  • Yoo Tae-Seok;Lee Jae-Hoon
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.155-162
    • /
    • 2006
  • Deflections of jointed concrete pavements at test road are monitored during 48 hours. And methods of calibration with respect to curling deflections are suggested. Relations between deflection ratio of center to joint at test time and deflection ratio of center at test time to center at reference time are described by regression. From deflections at test time, deflections transformed to reference time which gives minimum deflections in a day are estimated through regression curves and concluded to propose as a alternative method of curling calibration with more data accumulation.

  • PDF

Thin Bonded Concrete Overlay for Concrete Pavement Rehabilitation (콘크리트포장의 박층 콘크리트 덧씌우기공법)

  • 윤경구;이형준;엄주용;서영찬
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.635-642
    • /
    • 1997
  • This research focused on the development of concrete overlay and test, which was conducted at 88 Highway 105k, 2 lanes of 290 m. The field application test consists of 6 cm and 10 cm bonded concrete overlay and 25 cm unbonded concrete overlay, using the slag cement for opening lanes for traffic early. The overlay were placed in a day. The whole period of traffic closing wes 8 day and it was reopened to traffic after concrete overlay has cured for 3 day. 5 cracks were founded when the field test section was investigated after 1 month, but all these may not make significant problems to overlay because these initiated and growed at the same line of repair section. The rideability and skid resistance become much better like in the new pavement after overlay. The structural capacity against deflection was much. which were verified by FWD(Falling Weight Deflectometer). The field test section is being used in a good condition and the results of field application and pavement performance analysis are encouraging. This rehabilitation methods may be adopted in Korea after a more field performance verifications.

  • PDF

Evaluation on the Effect of Depth Buried Pipeline and Refilling Materials on Pavement Performance (도로하부 매설관의 매설심도 및 되메우기 재료가 포장체에 미치는 영향 평가)

  • Baek, Cheolmin;Kim, Yeong Min;Kwon, Soo-Ahn;Hwang, Sung Do;Kim, Jin Man
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.105-112
    • /
    • 2013
  • PURPOSES : Compared to the criteria from advanced countries, Korea has conservative criteria for the buried depth of pipeline (about 30~70cm deeper) causing the waste of cost and time. Therefore, this research investigated the effect of various buried depths of pipeline on pavement performance in order to modify the criteria to be safe but economical. In addition, a recycled aggregate which is effective in economical and environmental aspect was evaluated to be used as a refilling material. METHODS : In this study, total 10 pilot sections which are composed with various combinations of pavement structure, buried depth of pipeline, and refilling material were constructed and the telecom cable was utilized as a buried pipeline. During construction, LFWD (Light Falling Weight Deflectometer) tests were conducted on each layer to measure the structural capacity of underlying layers. After the construction is completed, FWD (Falling Weight Deflectometer) tests and moving load tests were performed on top of the asphalt pavement surface. RESULTS : It was found from the LFWD and FWD test results that as the buried depth decrease, the deflections in subbase and surface layer were increased by 30% and 5~10%, respectively, but the deflection in base layer remained the same. In the moving load test, the longitudinal maximum strain was increased by 30% for 120mm of buried depth case and 5% for 100mm of buried depth case. Regarding the effect of refilling material, it was observed that the deflections in subbase and surface layer were 10% lager in recycled aggregate compared to the sand material. CONCLUSIONS : Based on the testing results, it was found that the change in buried depth and refiliing material would not significantly affect the pavement performance. However, it is noted that the final conclusion should be made based on an intensive structural analysis for the pavement under realistic conditions (i.e., repeated loading and environmental loading) along with the field test results.

Effect of Longitudinal Steel Ratio on Behavior of CRCP System (연속철근콘크리트 도로포장의 거동에 종방향 철근비가 미치는 영향)

  • Kim, Seong-Min;Cho, Byoung-Hooi;Kwon, Soon-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.58-61
    • /
    • 2006
  • The effect of the steel ratio on the behavior of continuously reinforced concrete pavement (CRCP) under moving wheel loads and environmental loads were investigated in this study. The CRCP sections having different steel ratios of 0.6, 0.7, and 0.8% were considered: (1) to evaluate the load transfer efficiency (LTE) at transverse cracks; (2) to investigate strains in CRCP when the system is subjected to moving vehicle loads; (3) and to investigate the time histories of the crack spacing variations. The LTEs were obtained by conducting the falling weight deflectometer (FWD) tests. The strains in the concrete slab and the bond braker layer under moving vehicle loads were obtained using embedded strain gages. The results of this study show that the LTEs at transverse cracks are very high and not affected by the steel ratio. The strains in CRCP under vehicle loads become smaller as the vehicle speed increases or as the wandering distance increases; however, the strains are not clearly affected by the steel ratio. However, the changes in the crack spacings are affected by the steel ratio.

  • PDF

A Study on Evaluation of Layer Moduli and Stresses in Cement Concrete Pavement System (시멘트콘크리트 포장구조계의 층별물성 및 응력추정에 관한 연구)

  • Lee, Seong Won;Kim, Moon Kyum;Kim, Soo Il;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.47-56
    • /
    • 1990
  • An inverse self-iterative procedure is developed to estimate layer moduli and stresses in cement concrete pavement systems from the falling weight deflectometer deflection basins. The existing concrete pavement highways are analyzed using coupled analysis procedure of finite element and layer elastic theory for models obtained through factorial design, from which the characteristics of deflection basins are studied and the empirical equations are proposed for the estimation of layer moduli. The empirical equations are used to assume initial moduli, and the relations between the rate of change of moduli and deflections are used in the self-iterative procedure to ensure accuracy of moduli. The developed computer program of this procedure is verified through various numerical model tests.

  • PDF