• Title/Summary/Keyword: falling weight

Search Result 196, Processing Time 0.028 seconds

A Case Study for the Estimation of Remaining Lives of Asphalt Pavements (아스팔트포장 잔존수명 예측 사례 연구)

  • Lee, Jung-Hun;Lee, Hyun-Jong;Park, Hee-Mun;Kim, In-Tai
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.1-13
    • /
    • 2008
  • This study presents a case study of condition evaluation of various asphalt pavement sections to estimate performance lives. The pavement surface conditions including cracking and rutting are first evaluated using a automatic pavement analyzer, ARAN. HPCI(Highway Pavement Condition Index) values are estimated using the pavement surface distress data. It is observed from the pavement distress survey that the major distress type of the sections is top-down cracking. The modulus value of each pavement layer is back-calculated from the defection data obtained from a FWD(Falling Weight Deflectometer) and compared with the laboratory measured dynamic modulus values. Remaining lives of the various pavement sections are estimated based on a mechanistic-empirical approach and AAHTO 1993 design guide. The structural capacities of the all pavement sections based on the two approaches are strong enough to maintain the pavement sections for the rest of design life. Since the major distress type is top-down cracking, the remaining lives of the pavement sections are estimated based on HPCI and existing performance database of highway pavements. To evaluate the causes of premature pavement distress, various material properties, such as air void, asphalt binder content, aggregate gradation, dynamic modulus and fatigue resistance, are measured from the field cores. It is impossible to accurately estimate the binder contents of field samples using the ignition method. It is concluded from the laboratory tests that the premature top down cracking is mainly due to insufficient compaction and inadequate aggregate gradation.

  • PDF

Investigation of Minimum Number of Drop Levels and Test Points for FWD Network-Level Testing Protocol in Iowa Department of Transportation (아이오와 주 교통국의 FWD 네트워크 레벨 조사 프로토콜을 위한 최소 하중 재하 수와 조사지점 수의 결정)

  • Kim, Yong-Joo;Lee, Ho-Sin(David);Omundson, Jason S.
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.39-46
    • /
    • 2010
  • In 2007, Iowa department of transportation (DOT) initiated to run the falling weight deflectometer (FWD) network-level testing along Iowa highway and road systems and to build a comprehensive database of deflection data and subsequent structural analysis, which are used for detecting pavement structure failure, estimating expected life, and calculating overlay requirements over a desired design life. Iowa's current FWD networklevel testing protocol requires that pavements are tested at three-drop level with 8-deflection basin collected at each drop level. The test point is determined by the length of the tested pavement section. However, the current FWD network-level program could cover about 20% of Iowa's highway and road systems annually. Therefore, the current FWD network-level test protocol should be simplified to test more than 20% of Iowa's highway and road systems for the network-level test annually. The main objective of this research is to investigate if the minimum number of drop levels and test points could be reduced to increase the testing production rate and reduce the cost of testing and traffic control without sacrificing the quality of the FWD data. Based upon the limited FWD network-level test data of eighty-three composite pavement sections, there was no significant difference between the mean values of three different response parameters when the number of drop levels and test points were reduced from the current FWD network-level testing protocol. As a result, the production rate of FWD tests would increase and the cost of testing and traffic control would be decreased without sacrificing the quality of the FWD data.

Behavior of Continuously Reinforced Concrete Pavement under Moving Vehicle Loads and Effecct of Steel Ratio (이동차량하중에 대한 연속철근콘크리트포장의 거동 및 철근비의 영향)

  • Kim Seong-Min;Cho Byoung-Hooi;Kwon Soon-Min
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.119-130
    • /
    • 2006
  • The behavior of continuously reinforced concrete pavement (CRCP) and the effect of the steel ratio on the behavior under moving wheel loads were investigated in this study. The CRCP sections having different steel ratios of 0.6, 0.7, and 0.8% were considered to evaluate the load transfer efficiency (LTE) at transverse cracks and to investigate the strains in CRCP when the system is subjected to moving vehicle loads. The LTEs were obtained by conducting the falling weight deflectometer (FWD) tests and the tests were performed at three different times of a day to find the curling effect due to the daily temperature changes in CRCP. The strains in the concrete slab and the bond braker layer of the CRCP system under moving vehicle loads were obtained using the embedded strain gages. The results of this study show that the LTEs at transverse cracks are very high and not affected by the time of testing and the steel ratio. The strains in CRCP under vehicle loads become smaller as the vehicle speed increases or as the wandering distance increases; however, the strains are not clearly affected by the steel ratio.

  • PDF

A Study on Various Soil Stiffness Evaluation Methods with Field Test (현장시험을 통한 다양한 지반강성 평가방법에 대한 연구)

  • Yoo, Wan-Kyu;Kim, Byoung-Il;Kim, Ju-Hyong;Park, Keun-Bo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1373-1380
    • /
    • 2010
  • The plate loading test(PLT) and the field density test are mainly used on the construction of embankments to control the compaction of a limited layer thickness. These two test methods are very time consuming and inefficient, but they are still commonly used as the methods of quality control for soil compaction. In the last 3 decades, many devices such as geogauge, light falling weight deflectometer(LFWD) and dynamic cone penetrometer(DCP) etc., have been introduced into the engineering market with the objective of acquiring in situ stiffness properties of the compacted soil layers. Recently, a new type of sensor, called compactometer, which in mounted on the drum of a roller and measures impact forces continuously with GPS, called as Continuous Compaction Control(CCC), has come into use in many countries such as America, Germany, Japan and so on. The main objective of this paper is to assess the potential use of these new devices as quality control and assurance devices for compacted soil layers. Based on this study, compactometer and the LFWD results werestrongly correlated with the result obtained from the PLT and the field density test.

A Study of Improvement of Urban Pavement Maintenance Technique based on Pavement Condition Evaluation and FWD Data (도로포장 표면조사와 FWD정보에 기반한 도심지 도로포장 유지보수 기법 개선방안 연구)

  • Lee, Sangyum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.532-541
    • /
    • 2016
  • The objective of this paper is to support accurate pavement condition assessment and decision of proper maintenance method and time by conducting visual inspection and calculating the remaining life of pavement from falling weight deflectometer(FWD) data. Each was implemented in the same long-term performance pavement(LTPP) sections. Visual inspection was executed to measure pavement condition indices such as crack, rutting and international roughness index(IRI) and the Seoul Pavement Index(SPI) was calculated based on these results. The dynamic modulus was back-calculated from the FWD data. The remaining pavement lives were determined from equivalent single axle loading(ESAL) and FWD data. Correlation of maintenance priority by each result value was examined. Consequently, the correlation between remaining life to Crack and Rutting was higher than the other factors or indicesbecause IRI is not related to FWD value and SPI value consists with IRI value and other indices. The R-square value of correlation of FWD with Crack and Rutting was 0.65, which indicated an insufficient correlation. Consequently, when decision of maintenance of method, time, etc. is determined, FWD data have to be considered with Crack and Rutting because of those relations.

Evaluation of Various Soil Stiffness Test Equipments as Construction Control Tools (다양한 지반강성 평가장치를 이용한 현장 다짐도 예비 평가)

  • Kim, Ju-Hyong;Yoo, Wan-Kyu;Kim, Byoung-Il;Chae, Kwang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.636-643
    • /
    • 2008
  • The objective of this paper is to assess the potential use of the geogauge and the light falling weight deflectometer (LFWD) and the soil impact hammer as quality control/quality assurance $Q_C/Q_A$ devices for compacted soil layers. A comprehensive field experimental program considering variation of number of compaction, water contents and thickness of compaction layer was conducted on compacted layers of gravel sand. The geogauge, LFWD, the soil impact hammer and static load test (PLT) as a reference test were performed for the compacted layers. The geogauge elastic modulus, $E_G$, the LFWD dynamic modulus, ELFWD, empirical soil stiffness, $K_{30}$, obtained from soil impact hammer and soil stiffness directly obtained from PLT, $K_{30}$, were correlated with increasing number of compaction. The results of this study show that the geogauge, LFWD and the soil impact hammer, which are very simple to test, can be used as substituting devices for static PLT which is a conventional quality control/quality assurance $Q_C/Q_A$ devices for compacted soil layers.

  • PDF

Development of Model for Structural Evaluation of Anti-Freezing Layer (동상방지층의 구조적 평가를 위한 모형 개발)

  • Lee, Moon-Sup;Heo, Tae-Young;Park, Hee-Mun;Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.25-32
    • /
    • 2012
  • The thickness of anti-freezing layer has been empirically determined using the frost depth obtained from the freezing index and has not been generally considered as a structural layer in pavement design procedure. In fact, the anti-freezing layer makes a role in structural layer and enables to reduce the total thickness of pavement system. The objective of this study is to develop the statistical regression model for evaluating the structural capacity of anti-freezing layer using Falling Weight Deflectormeter(FWD) test data in asphalt pavements. The FWD testing was conducted at the embankment, cutting, and boundary area of various test sections to estimate the structural capacity of anti-freezing layer in different foundation condition. It is observed from this testing that the center deflections of pavement structure with anti-freezing layer are smaller than those without anti-freezing layer ranging from 0.4 to 82.6%. To determine the variables of statistical model, the correlation study has been conducted between various FWD deflection indexes and the anti-freezing layer thickness. It is found that the ${\Delta}BDI$(%)(${\Delta}Basin$ Damage Index(%)) is highly correlated with anti-freezing layer thickness. The ${\Delta}BDI$(%) model were developed for evaluating structural capacity of anti-freezing layer using linear mixed-effect models.

Evaluation on the Effect of Depth Buried Pipeline and Refilling Materials on Pavement Performance (도로하부 매설관의 매설심도 및 되메우기 재료가 포장체에 미치는 영향 평가)

  • Baek, Cheolmin;Kim, Yeong Min;Kwon, Soo-Ahn;Hwang, Sung Do;Kim, Jin Man
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.105-112
    • /
    • 2013
  • PURPOSES : Compared to the criteria from advanced countries, Korea has conservative criteria for the buried depth of pipeline (about 30~70cm deeper) causing the waste of cost and time. Therefore, this research investigated the effect of various buried depths of pipeline on pavement performance in order to modify the criteria to be safe but economical. In addition, a recycled aggregate which is effective in economical and environmental aspect was evaluated to be used as a refilling material. METHODS : In this study, total 10 pilot sections which are composed with various combinations of pavement structure, buried depth of pipeline, and refilling material were constructed and the telecom cable was utilized as a buried pipeline. During construction, LFWD (Light Falling Weight Deflectometer) tests were conducted on each layer to measure the structural capacity of underlying layers. After the construction is completed, FWD (Falling Weight Deflectometer) tests and moving load tests were performed on top of the asphalt pavement surface. RESULTS : It was found from the LFWD and FWD test results that as the buried depth decrease, the deflections in subbase and surface layer were increased by 30% and 5~10%, respectively, but the deflection in base layer remained the same. In the moving load test, the longitudinal maximum strain was increased by 30% for 120mm of buried depth case and 5% for 100mm of buried depth case. Regarding the effect of refilling material, it was observed that the deflections in subbase and surface layer were 10% lager in recycled aggregate compared to the sand material. CONCLUSIONS : Based on the testing results, it was found that the change in buried depth and refiliing material would not significantly affect the pavement performance. However, it is noted that the final conclusion should be made based on an intensive structural analysis for the pavement under realistic conditions (i.e., repeated loading and environmental loading) along with the field test results.

Stiffness Characterization of Subgrade using Crosshole-Type Dynamic Cone Penetrometer (크로스홀 형태의 동적 콘 관입기를 이용한 노반의 강성특성 평가)

  • Hong, Won-Taek;Choi, Chan Yong;Lim, Yujin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.2
    • /
    • pp.55-63
    • /
    • 2018
  • In order to support the load of the train with enough stiffness, a study on an effective method for the characterization of the stiffness of the compacted subgrade is required. In this study, the crosshole-type dynamic cone penetrometer (CDCP) is used for the stiffness characterization of the subgrade along the depth. For the application of the CDCP test, three points of compacted subgrades are selected as the study sites. For the study sites, CDCP test, in-situ density test, and light falling weight deflectometer (LFWD) test are conducted. As the results of CDCP tests, shear wave velocity profiles are obtained by using the travel times and the travel distances of the shear waves along the depth. In addition, maximum shear modulus ($G_{max}$) profiles are estimated by using the density of the subgrades and the shear wave velocity profiles. The averaged maximum shear moduli at each testing point are highly correlated with the dynamic deflection moduli ($E_{vd}$) determined by LFWD tests. Therefore, a reliable stiffness characterization of the subgrade can be conducted by using CDCP tests. In addition, because CDCP characterizes the stiffness of the subgrade along the depth rather than a representative value, CDCP test may be effectively used for the stiffness characterization of the subgrade.

Effects of Cattail Pollen Powders on the Rheology of Dough and Processing Adaptability of White Pan Bread (부들화분을 첨가한 밀가루 반죽의 물성과 제빵 적성)

  • Lee, Bung-Chan;Joung, Yong-Myeon;Hwang, Seong-Yun;Lee, Jong-Hwa;Oh, Man-Jin
    • Food Science and Preservation
    • /
    • v.16 no.4
    • /
    • pp.525-533
    • /
    • 2009
  • To explore cattail pollen powder as a functional food ingredient, we analyzed the general components of pollen powder, tested changes in the physical properties of dough containing the powder, and investigated the process ability of powder-containing dough in bread making by adding 3%, 6%, or 9% by weight of pollen powder to wheat flour. Cattail pollen powder consisted of (all w/w) 12.7-13.2% water, 15.7-17.8% crude protein, 1.3% crude fat, 7.5-7.7% free sugar, 14.7-18.6% crude fiber, 3.4-4.9% pollen, and 49.7-55.9% soluble nitrogen-free extract (NFE). Analysis of the physical properties of dough mixed with pollen powder showed that as more pollen powder was added, the absorption rate increased, but dough stability decreased. With increasing levels of cattail pollen powder, the falling number decreased, and amylase activity increased. Fermentability was highest in dough made with 3% by weight of pollen powder, and the bread product made from such dough had the greatest volume. As more cattail pollen powder was added, the moisture activity in dough tended to decrease to a greater extent than seen in control dough, and this tendency increased with time. We found that longer storage periods were associated with greater hardness and springiness, which indicated degradation in product quality. Therefore, it is suggested that bread products containing cattail pollen powder should be consumed within 3 days of preparation. In a taste survey, bread baked with 3% (w/w) cattail pollen powder scored highest in all questionnaire items.