• 제목/요약/키워드: fake fingerprint detection

검색결과 9건 처리시간 0.03초

Convolutional Neural Networks 특징을 이용한 지문 이미지의 위조여부 판별 및 시각화 (Fingerprint Liveness Detection and Visualization Using Convolutional Neural Networks Feature)

  • 김원진;이경수;박은수;김정민;김학일
    • 정보보호학회논문지
    • /
    • 제26권5호
    • /
    • pp.1259-1267
    • /
    • 2016
  • 최근 지문 인식을 통한 사용자 인증 기술이 상용화 되면서 위조 지문 이미지 판별이 더욱 중요해졌다. 본 논문에서는 CNN 특징을 이용한 위조 지문 이미지 판별 방법을 제안하였으며, CNN 모델이 실제 지문의 어느 부분에 반응하여 위조지문을 분류하는지 시각화 방법을 통해 분석하였다. 제안하는 방법은 지문영역과 배경영역을 분리하는 전처리 작업 후 CNN 모델을 이용하여 지문의 위조여부를 분류한다. 지문을 단순히 생체지문과 위조지문으로 분류하는 것이 아니라 위조지문을 구성하는 물질별로 분류하여 생체지문과 위조지문들에 대한 특징분석을 제공한다. 실험에 사용한 데이터베이스로는 생체 지문 이미지 6500여 장과 위조 지문 이미지 6000여 장으로 구성되어 있는 LivDet2013을 사용하였으며 위조여부에 대한 ACE 값으로 3.1%, 구성 물질 분류 정확도는 평균 79.58%를 보여 높은 수준의 분류성능을 갖고 있음을 확인하였다.

패치기반 컨볼루션 뉴럴 네트워크 특징을 이용한 위조지문 검출 (Fingerprint Liveness Detection Using Patch-Based Convolutional Neural Networks)

  • 박은수;김원진;이경수;김정민;김학일
    • 정보보호학회논문지
    • /
    • 제27권1호
    • /
    • pp.39-47
    • /
    • 2017
  • 최근 모바일 기기에서의 생체인증 시스템의 증가와 출입관리 시스템에서의 위조지문을 이용한 출입 기록 조작으로 인해 위조 지문 검출에 대한 논의가 다시 활발해지고 있다. 본 논문에서는 입력 지문영상을 패치들로 나누고, 각 패치들에 CNN을 적용하여 위조, 생체, 배경의 세 가지로 분류한다. 이 중 배경으로 분류된 패치들을 제외하고 위조와 생체로 분류된 패치들의 수를 세어서 더 많은 패치가 인식된 쪽으로 위조여부를 판단하게 된다. CNN에 배경 클래스를 추가하여 분류하기 때문에, 제안하는 방법은 영상분할과 같은 추가적인 전처리 과정이 필요하지 않다. 제안하는 방법은 LivDet2011, LivDet2013, LivDet2015에 대하여 실험을 진행하였으며 분류결과 3.06%의 평균 오검출을 보여 매우 우수한 성능을 나타냄을 확인하였다.

Smart Optical Fingerprint Sensor for Robust Fake Fingerprint Detection

  • Baek, Young-Hyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권2호
    • /
    • pp.71-75
    • /
    • 2017
  • In this paper, a smart optical fingerprint sensor technology that is robust against faked fingerprints. A new lens and prism accurately detect fingerprint ridges and valleys that are needed to express a fingerprint's intrinsic characteristics well. The proposed technology includes light path configuration and an optical fingerprint sensor that can effectively identify faked fingerprint features. Results of simulation show the smart optical fingerprint sensor classifies the characteristics of faked fingerprints made from silicone, gelatin, paper, and rubber, and show that the proposed technology has superior detection performance with faked fingerprints, compared to the existing infrared discrimination method.

다중 특징을 이용한 위조 지문 검출 (Liveness Detection of Fingerprints using Multi-static Features)

  • 강래충;최희승;김재희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.295-296
    • /
    • 2007
  • Fake fingersubmission to the sensor is a major problem in fingerprint recognition systems. In this paper, we introduce a novel liveness detection method using multi-static features. For convenience and usefulness of field application, static features are only considered to detect 'live' and 'fake' fingerprint images. Individual pore spacing, noise of image and first order statistics of image are analyzed as our static features to reflect the Physiological and statistical characteristics of live and fake fingerprint.

  • PDF

위조지문 판별률 향상을 위한 학습데이터 혼합 증강 방법 (Data Mixing Augmentation Method for Improving Fake Fingerprint Detection Rate)

  • 김원진;김성빈;유경송;김학일
    • 정보보호학회논문지
    • /
    • 제27권2호
    • /
    • pp.305-314
    • /
    • 2017
  • 최근 모바일 및 핀테크(fin-tech) 분야의 최신 트렌드로 지문인식, 홍채인식과 같은 생체인식을 통한 사용자 본인인증이 주목 받고 있다. 특히 지문인식을 이용한 인증 방식은 전통적인 생체인식 방식으로써 사용자들이 사용하는데 발생하는 거부감이 다른 생체인식에 비해 현저히 낮아 현재 가장 보편적으로 이용되는 방식이다. 이와 동시에 지문을 이용한 인증 시 보안에 대한 중요성이 부각되어 지문의 위조 여부 판별의 중요성 또한 증가하고 있다. 본 논문에서는 CNN(Convolutional Neural Networks) 특징을 이용한 위조 여부 판별 방법에 있어 판별률을 향상시키기 위한 새로운 방법을 제시한다. 학습데이터에 영향을 많이 받는 CNN 특성 상 기존에는 판별률을 향상시키기 위해 아핀 변환(affine transformation) 또는 수평 반전(horizontal reflection)을 사용하여 학습데이터의 양을 증가 시키는 것이 일반적인 방법이었으나 본 논문에서는 위조지문 판별 난이도를 기반으로 한 효과적인 학습데이터 증강(data augmentation) 방법을 제시하며 실험을 통해 제안하는 방법의 타당성을 확인하였다.

광학식 지문센서에서의 위조 지문 검출 방법 (A Detection Method of Fake Fingerprint in Optical Fingerprint Sensor)

  • 이지선;김재환;채진석;이병수
    • 한국멀티미디어학회논문지
    • /
    • 제11권4호
    • /
    • pp.492-503
    • /
    • 2008
  • 최근 개인 인증 기술의 발달과 중요성이 높아짐에 따라 분실이나 도용 등의 위험이 적은 바이오 인식 기술이 빠르게 보급되고 있다. 특히, 인식률이 높고 이용하기 쉬운 지문 인식 시스템이 홍채 인식, 얼굴 인식, 정맥 인식 등의 다른 바이오 인식 시스템보다 훨씬 많이 사용되고 있는 것으로 나타나고 있다. 그러나 이와 같은 지문 인식 시스템은 지문 데이터를 입력할 때, 인공적으로 만들어진 위조 지문이 입력될 수 있는 문제점을 가지고 있다. 따라서 이와 같은 문제를 해결하기 위해 본 논문에서는 광학식 지문센서에서 발생되는 빛이 생체 지문을 투과하면서 감쇠되는 정도를 측정하고, 일정시간에 따른 단계별 빛의 투과량의 명암 차이를 분석하여 위조 지문의 입력을 검출하는 방법을 제안하였다. 제안된 시스템의 성능 향상을 입증하기 위해 기존에 사용되던 지문 온도 측정을 병행하는 멀티센서(Multi-Sensor) 인식 시스템과 성능 비교 실험을 수행하였으며, 그 결과, 위조 지문에 대한 검출률이 약 32.6% 정도 향상된 것을 확인함으로써 지문 인식시스템에서의 보안 문제의 해결 가능성을 제시하였다.

  • PDF

Empirical study on liveness detection of fingerprint

  • Jin Chang-Long;Huan Nguyen van;Kim Ha-Kil
    • 한국정보보호학회:학술대회논문집
    • /
    • 한국정보보호학회 2006년도 하계학술대회
    • /
    • pp.241-245
    • /
    • 2006
  • Recent studies show that fingerprint recognition technology is confronted with spoofing of artificial fingers. In order to overcome this problem, the fingerprint recognition system needs to distinguish a fake finger from a live finger. This paper examines existing software-based approaches for fingerprint liveness detection through experiments. Implemented and tested in this paper are the approaches based on deformation, wavelet, and perspiration. These approaches will be analyzed and compared based on experimental results.

  • PDF

Multi-modal Authentication Using Score Fusion of ECG and Fingerprints

  • Kwon, Young-Bin;Kim, Jason
    • Journal of information and communication convergence engineering
    • /
    • 제18권2호
    • /
    • pp.132-146
    • /
    • 2020
  • Biometric technologies have become widely available in many different fields. However, biometric technologies using existing physical features such as fingerprints, facial features, irises, and veins must consider forgery and alterations targeting them through fraudulent physical characteristics such as fake fingerprints. Thus, a trend toward next-generation biometric technologies using behavioral biometrics of a living person, such as bio-signals and walking characteristics, has emerged. Accordingly, in this study, we developed a bio-signal authentication algorithm using electrocardiogram (ECG) signals, which are the most uniquely identifiable form of bio-signal available. When using ECG signals with our system, the personal identification and authentication accuracy are approximately 90% during a state of rest. When using fingerprints alone, the equal error rate (EER) is 0.243%; however, when fusing the scores of both the ECG signal and fingerprints, the EER decreases to 0.113% on average. In addition, as a function of detecting a presentation attack on a mobile phone, a method for rejecting a transaction when a fake fingerprint is applied was successfully implemented.

Face Spoofing Attack Detection Using Spatial Frequency and Gradient-Based Descriptor

  • Ali, Zahid;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.892-911
    • /
    • 2019
  • Biometric recognition systems have been widely used for information security. Among the most popular biometric traits, there are fingerprint and face due to their high recognition accuracies. However, the security system that uses face recognition as the login method are vulnerable to face-spoofing attacks, from using printed photo or video of the valid user. In this study, we propose a fast and robust method to detect face-spoofing attacks based on the analysis of spatial frequency differences between the real and fake videos. We found that the effect of a spoofing attack stands out more prominently in certain regions of the 2D Fourier spectra and, therefore, it is adequate to use the information about those regions to classify the input video or image as real or fake. We adopt a divide-conquer-aggregate approach, where we first divide the frequency domain image into local blocks, classify each local block independently, and then aggregate all the classification results by the weighted-sum approach. The effectiveness of the methodology is demonstrated using two different publicly available databases, namely: 1) Replay Attack Database and 2) CASIA-Face Anti-Spoofing Database. Experimental results show that the proposed method provides state-of-the-art performance by processing fewer frames of each video.