• Title/Summary/Keyword: failure shape

검색결과 903건 처리시간 0.023초

Buckling failure of cylindrical ring structures subjected to coupled hydrostatic and hydrodynamic pressures

  • Ping, Liu;Feng, Yang Xin;Ngamkhanong, Chayut
    • Structural Monitoring and Maintenance
    • /
    • 제8권4호
    • /
    • pp.345-360
    • /
    • 2021
  • This paper presents an analytical approach to calculate the buckling load of the cylindrical ring structures subjected to both hydrostatic and hydrodynamic pressures. Based on the conservative law of energy and Timoshenko beam theory, a theoretical formula, which can be used to evaluate the critical pressure of buckling, is first derived for the simplified cylindrical ring structures. It is assumed that the hydrodynamic pressure can be treated as an equivalent hydrostatic pressure as a cosine function along the perimeter while the thickness ratio is limited to 0.2. Note that this paper limits the deformed shape of the cylindrical ring structures to an elliptical shape. The proposed analytical solutions are then compared with the numerical simulations. The critical pressure is evaluated in this study considering two possible failure modes: ultimate failure and buckling failure. The results show that the proposed analytical solutions can correctly predict the critical pressure for both failure modes. However, it is not recommended to be used when the hydrostatic pressure is low or medium (less than 80% of the critical pressure) as the analytical solutions underestimate the critical pressure especially when the ultimate failure mode occurs. This implies that the proposed solutions can still be used properly when the subsea vehicles are located in the deep parts of the ocean where the hydrostatic pressure is high. The finding will further help improve the geometric design of subsea vehicles against both hydrostatic and hydrodynamic pressures to enhance its strength and stability when it moves underwater. It will also help to control the speed of the subsea vehicles especially they move close to the sea bottom to prevent a catastrophic failure.

객체기반 부호화에서 혼합형 부호화방식을 이용한 MF(Model Failure) 객체의 색신호 부호화 (Color coding of MF(model failure) object using hybrid coding method in object based coding)

  • 김동하;이지훈;고성제;이태원
    • 전자공학회논문지S
    • /
    • 제34S권5호
    • /
    • pp.45-51
    • /
    • 1997
  • To trnsmit moving image signals by using an object vased coding technique at the rate of 8kbps~11kbps, it is very important to minimize the bit rates used for the compression of the color information of MF-objects. This paper proposes a hybrid coding method which uses the shpae adaptive coding method and the interframe reference method selectively. Gilge's shape adaptive orthogonal coidng method is utilized for shpae adaptive coding. The interfarame reference method approximates the low-passed signals of the image by gilge's shpae adaptive orthogonalization method and then refers the approximation error signals from the high frequency signal components of th eprevious frame. The proposed method achives the bit rates reduction of 17% compared to the gilge's shape adaptive orthogonalization method and 30% rduction compared to the shape adaptive DCT in average.

  • PDF

평판 발을 가지는 사족 보행 로봇의 내고장성 걸음새 (Fault Tolerant Straight-Line Gaits of a Quadruped Robot with Feet of Flat Shape)

  • 양정민;곽성우
    • 제어로봇시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.141-148
    • /
    • 2012
  • This paper proposes fault tolerant gaits of a quadruped robot with feet of flat shape. Fault tolerant gaits make it possible for a legged robot to continue static walking against a leg failure. In the previous researches, it was assumed that a legged robot had feet that have point contact with the surface. When the robot is endowed with feet having flat shape, fault tolerant gaits can show better performance compared with the former gaits, especially in terms of the stride length and gait stability. In this paper, fault tolerant gaits of a quadruped robot against a locked joint failure are addressed in straight-line motion and crab walking, respectively.

Cyclic performance of RC beam-column joints enhanced with superelastic SMA rebars

  • Ghasemitabar, Amirhosein;Rahmdel, Javad Mokari;Shafei, Erfan
    • Computers and Concrete
    • /
    • 제25권4호
    • /
    • pp.293-302
    • /
    • 2020
  • Connections play a significant role in strength of structures against earthquake-induced loads. According to the post-seismic reports, connection failure is a cause of overall failure in reinforced concrete (RC) structures. Connection failure results in a sudden increase in inter-story drift, followed by early and progressive failure across the entire structure. This article investigated the cyclic performance and behavioral improvement of shape-memory alloy-based connections (SMA-based connections). The novelty of the present work is focused on the effect of shape memory alloy bars is damage reduction, strain recoverability, and cracking distribution of the stated material in RC moment frames under seismic loads using 3D nonlinear static analyses. The present numerical study was verified using two experimental connections. Then, the performance of connections was studied using 14 models with different reinforcement details on a scale of 3:4. The response parameters under study included moment-rotation, secant stiffness, energy dissipation, strain of bar, and moment-curvature of the connection. The connections were simulated using LS-DYNA environment. The models with longitudinal SMA-based bars, as the main bars, could eliminate residual plastic rotations and thus reduce the demand for post-earthquake structural repairs. The flag-shaped stress-strain curve of SMA-based materials resulted in a very slight residual drift in such connections.

모형시험을 통한 비압력 지중관거 균열로 인한 지반함몰 메커니즘 연구 (An investigation on the ground collapse mechanism induced by cracks in a non-pressurized buried pipe through model tests)

  • 김용기;남규태;김호종;신종호
    • 한국터널지하공간학회 논문집
    • /
    • 제20권2호
    • /
    • pp.235-253
    • /
    • 2018
  • 지하관거 균열로 인한 지하수의 흐름은 주변 지반의 토사유실을 야기하여 관거 인접 지반에서의 공동발생, 나아가 지반함몰(싱크홀) 원인이 된다. 본 연구는 관거의 균열을 모사하는 모형시험을 통해 비점착성 지반에 위치한 지중 비압력 관거의 균열로부터 비롯되는 지반함몰 메커니즘과 이로 인한 파괴모드를 조사하였다. 토사유실 및 함몰 영향인자로서 균열크기, 관거유속, 지하수위, 토피고 그리고 지반구성재료 등을 채택하여 이들 인자들이 함몰거동에 미치는 영향을 조사하였다. 각 인자들에 따른 지반파괴의 형상(파괴모드)과 지반유실량을 분석한 결과, 토피고와 지하수위가 일치하는 경우 최종파괴모드는 침식각이 불연속적으로 변화하는 'Y'형으로 관찰되며, 지하수위가 더 높게 위치하는 경우 침식각이 일정한 파괴면 형상인 'V'형으로 나타난다. 토피고가 증가하는 경우의 파괴형상에서 토피고 영향에 무관한 길이와 토피고에 따라 점진적으로 증가하는 폭을 갖는 수직함몰구간이 형성되는 결과를 얻었다.

사면(斜面)의 삼차원(三次元) 파괴확률(破壞確率)에 관(關)한 연구(硏究)(II) (A Three Dimensional Study on the Probability of Slope Failure(II))

  • 김영수;차홍준;정성관
    • 산업기술연구
    • /
    • 제3권
    • /
    • pp.53-63
    • /
    • 1983
  • The probability of failure is used to analyze the reliability of three dimensional slope failure, instead of conventional factor of safety. The strength parameters are assumed to be normal variated and beta variated. These are interval estimated under the specified confidence level and maximum likelihood estimation. The pseudonormal and beta random variables are generated using the uniform probability transformation method according to central limit theorem and rejection method. By means of a Monte-Carlo Simulation, the probability of failure is defined as; Pf=M/N N : Total number of trials M : Total number of failures Some of the conclusions derived from the case study include; 1. Three dimensional factors of safety are generally much higher than 2-D factors of safety. However situations appear to exist where the 3-D factor of safety can be lower than the 2-D factor of safety. 2. The F3/F2 ratio appears to be quite sensitive to c and ${\phi}$ and to the shape of the 3-D shear surface and the slope but not to be to the unit weight of soil. 3. In cases that strength parameters are assumed to be normal variated and beta variated, the relationships between safety factor and the probability of failure are fairly consistent, regardless of the shape of the 3-D shear surface and the slope. 4. As the c-value is increased, the probability of failure for the same safety factor is increased and as the ${\phi}-value$ is increased, the probability of failure for the same safety factor is decreased.

  • PDF

형상기억합금을 이용한 복합재료 구조물의 저속충격특성 향상 (Improvement of Impact Resistance of Composite Structures using Shape Memory Alloys)

  • 김은호;임미선;이인;김형원
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.453-456
    • /
    • 2009
  • 복합재료 구조물의 충격 특성을 향상시키기 위해 형상기억합금을 삽입한 복합재료 평판의 충격실험을 수행하였다. 형상기억합금은 일반 금속 재료에 비해 큰 극한 변형율과 강도를 가질 뿐 아니라 변형시에 상변화를 통해서 많은 변형에너지를 흡수할 수 있는 특징을 가진다. 이러한 형상기억합금을 복합재료에 삽입하여 충격에 약한 복합재료의 충격 저항성을 향상시키기 위한 연구를 수행하였다. 먼저 여러 온도에서 형상기억합금의 인장실험을 수행하여 형상기억합금의 열-기계학적 특성을 파악하였다. 이후 형상기억합금, 철, 알루미늄 선을 삽입한 복합재료 평판의 충격 실험을 통하여 보강재에 따른 충격 특성을 파악하였다. 또한 형상기억합금의 두께 방향으로의 삽입위치에 따른 충격 특성을 파악하였다.

  • PDF

Dynamic behavior of smart material embedded wind turbine blade under actuated condition

  • Mani, Yuvaraja;Veeraragu, Jagadeesh;Sangameshwar, S.;Rangaswamy, Rudramoorthy
    • Wind and Structures
    • /
    • 제30권2호
    • /
    • pp.211-217
    • /
    • 2020
  • Vibrations of a wind turbine blade have a negative impact on its performance and result in failure of the blade, therefore an approach to effectively control vibration in turbine blades are sought by wind industry. The small domestic horizontal axis wind turbine blades induce flap wise (out-of-plane) vibration, due to varying wind speeds. These flap wise vibrations are transferred to the structure, which even causes catastrophic failure of the system. Shape memory alloys which possess physical property of variable stiffness across different phases are embedded into the composite blades for active vibration control. Previously Shape memory alloys have been used as actuators to change their angles and orientations in fighter jet blades but not used for active vibration control for wind turbine blades. In this work a GFRP blade embedded with Shape Memory Alloy (SMA) and tested for its vibrational and material damping characteristics, under martensitic and austenite conditions. The embedment portrays 47% reduction in displacement of blade, with respect to the conventional blade. An analytical model for the actuated smart blade is also proposed, which validates the harmonic response of the smart blade.

내압과 굽힘의 복합하중에서 내부 감육배관의 손상기준 (Criterion for Failure of Internally Wall Thinned Pipe Under a Combined Pressure and Bending Moment)

  • 김진원;박치용
    • 한국안전학회지
    • /
    • 제17권4호
    • /
    • pp.52-60
    • /
    • 2002
  • Failure criterion is a parameter to represent the resistance to failure of locally wall thinned pipe, and it depends on material characteristics, defect geometry, applied loading type, and failure mode. Therefore, accurate prediction of integrity of wall thinned pipe requires a failure criterion adequately reflected the characteristics of defect shape and loading in the piping system. In the present study, the finite element analysis was performed and the results were compared with those of pipe experiment to develop a sound criterion for failure of internally wall thinned pipe subjected to combined pressure and bending loads. By comparing the predictions of failure to actual failure load and displacement, an appropriate criterion was investigated. From this investigation, it is concluded that true ultimate stress criterion is the most accurate to predict failure of wall thinned pipe under combined loads, but it is not conservative under some conditions. Engineering ultimate stress estimates the failure load and displacement reasonably for al conditions, although the predictions are less accurate compared with the results predicted by true ultimate stress criterion.

유압시스템 구성품의 수명시험을 위한 무고장 시험시간의 산출 (Determination of No-Failure Test Times for the Life Test of Hydraulic System Components)

  • 이성래;김형의
    • 유공압시스템학회논문집
    • /
    • 제3권3호
    • /
    • pp.8-13
    • /
    • 2006
  • It is very important for the manufacturers to predict the life of hydraulic system components according to the results of life tests. Since it takes too much time to test the hydraulic system components until failure, the no-failure test method is applied for the life test of them. If the shape parameter of Weibull distribution, the number of samples, the confidence level, and the assurance life are given, the no-failure test times of hydraulic system components can be calculated by given equation. Here, the procedures to obtain the no-failure test times of the hydraulic system components such as hydraulic motors and pumps, hydraulic cylinders, hydraulic valves, hydraulic accumulators, hydraulic hoses, and hydraulic filters are described briefly.

  • PDF