• Title/Summary/Keyword: failure scenarios

Search Result 167, Processing Time 0.021 seconds

Delamination evaluation on basalt FRP composite pipe by electrical potential change

  • Altabey, Wael A.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.515-528
    • /
    • 2017
  • Since composite structures are widely used in structural engineering, delamination in such structures is an important issue of research. Delamination is one of a principal cause of failure in composites. In This study the electrical potential (EP) technique is applied to detect and locate delamination in basalt fiber reinforced polymer (FRP) laminate composite pipe by using electrical capacitance sensor (ECS). The proposed EP method is able to identify and localize hidden delamination inside composite layers without overlapping with other method data accumulated to achieve an overall identification of the delamination location/size in a composite, with high accuracy, easy and low-cost. Twelve electrodes are mounted on the outer surface of the pipe. Afterwards, the delamination is introduced into between the three layers (0º/90º/0º)s laminates pipe, split into twelve scenarios. The dielectric properties change in basalt FRP pipe is measured before and after delamination occurred using arrays of electrical contacts and the variation in capacitance values, capacitance change and node potential distribution are analyzed. Using these changes in electrical potential due to delamination, a finite element simulation model for delamination location/size detection is generated by ANSYS and MATLAB, which are combined to simulate sensor characteristic. Response surfaces method (RSM) are adopted as a tool for solving inverse problems to estimate delamination location/size from the measured electrical potential changes of all segments between electrodes. The results show good convergence between the finite element model (FEM) and estimated results. Also the results indicate that the proposed method successfully assesses the delamination location/size for basalt FRP laminate composite pipes. The illustrated results are in excellent agreement with the experimental results available in the literature, thus validating the accuracy and reliability of the proposed technique.

Effectiveness Analysis and Profile Design Automation Tool Implementation for The Mass Production Weapon System Environmental Stress Screening Test (양산 무기체계 환경 부하 선별 시험 효과도 분석 및 프로파일 설계 자동화 도구 구현)

  • Kim, Jang-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.379-388
    • /
    • 2016
  • There are various system defects from weapons manufacturing due to the numerous production processes and various production environments. The first kind of defect is patent defects, which can be detected by visual inspection, functional testing, and existing quality control procedures during the manufacturing process. The second kind is latent defects, which cannot be detected though existing quality management approaches because of the complexity of the system and manufacturing process. To minimize the initial defect problems, environmental stress screening (ESS) is needed to detect the defects, remove them, and improve the product conditions based on the environmental stress conditions of temperature and vibration. We implemented a tool for quantitative ESS effectiveness analysis and profile design automation based on MIL-HDBK-344 and verified it using six scenarios with different temperature stress, vibration stress, and test designs.

A Study on Autonomous Update of Onboard Orbit Propagator (위성 탑재용 궤도전파기의 자동 갱신에 관한 연구)

  • Jeong,Ok-Cheol;No,Tae-Su;Lee,Sang-Ryul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.51-59
    • /
    • 2003
  • A method of autonomous update is presented for onboard orbit propagator. On board propagator is an alternative means that could be used for navigation purpose in case of CPS receiver's failure. Although the ground station is not a able to upload a new propagator, the onboard propagator must be maintained most up-to-date. For this, a filtering technique is proposed wherein GPS data are effectively used to continuously update the on board propagator which was uploaded previously. Even if the ground station has generated the on board propagator based on the wrong information, the onboard propagator with updating scheme can automatically correct the errors in the coefficients of residual reconstruction function. Several scenarios were used to show the validity of the scheme for updating the onboard propagator using KOMPSAT-1 orbit data.

Finite Element Analysis of Pilgering Process of Multi-Metallic Layer Composite Fuel Cladding (다중금속복합층 핵연료 피복관의 필거링 공정에 관한 유한 요소 해석 연구)

  • Kim, Taeyong;Lee, Jeonghyeon;Kim, Ji Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.75-83
    • /
    • 2017
  • In severe accident conditions of light water reactors, the loss of coolant may cause problems in integrity of zirconium fuel cladding. Under the condition of the loss of coolant, the zirconium fuel cladding can be exposed to high temperature steam and reacted with them by producing of hydrogen, which is caused by the failure in oxidation resistance of zirconium cladding materials during the loss of coolant accident scenarios. In order to avoid these problems, we develop a multi-metallic layered composite (MMLC) fuel cladding which compromises between the neutronic advantages of zirconium-based alloys and the accident-tolerance of non-zirconium-based metallic materials. Cold pilgering process is a common tube manufacturing process, which is complex material forming operation in highly non-steady state, where the materials undergo a long series of deformation resulting in both diameter and thickness reduction. During the cold pilgering process, MMLC claddings need to reduce the outside diameter and wall thickness. However, multi-layers of the tube are expected to occur different deformation processes because each layer has different mechanical properties. To improve the utilization of the pilgering process, 3-dimensional computational analyses have been made using a finite element modeling technique. We also analyze the dimensional change, strain and stress distribution at MMLC tube by considering the behavior of rolls such as stroke rate and feed rate.

EXPERIMENTAL INVESTIGATIONS RELEVANT FOR HYDROGEN AND FISSION PRODUCT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT

  • GUPTA, SANJEEV
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.11-25
    • /
    • 2015
  • The accident at Japan's Fukushima Daiichi nuclear power plant in March 2011, caused by an earthquake and a subsequent tsunami, resulted in a failure of the power systems that are needed to cool the reactors at the plant. The accident progression in the absence of heat removal systems caused Units 1-3 to undergo fuel melting. Containment pressurization and hydrogen explosions ultimately resulted in the escape of radioactivity from reactor containments into the atmosphere and ocean. Problems in containment venting operation, leakage from primary containment boundary to the reactor building, improper functioning of standby gas treatment system (SGTS), unmitigated hydrogen accumulation in the reactor building were identified as some of the reasons those added-up in the severity of the accident. The Fukushima accident not only initiated worldwide demand for installation of adequate control and mitigation measures to minimize the potential source term to the environment but also advocated assessment of the existing mitigation systems performance behavior under a wide range of postulated accident scenarios. The uncertainty in estimating the released fraction of the radionuclides due to the Fukushima accident also underlined the need for comprehensive understanding of fission product behavior as a function of the thermal hydraulic conditions and the type of gaseous, aqueous, and solid materials available for interaction, e.g., gas components, decontamination paint, aerosols, and water pools. In the light of the Fukushima accident, additional experimental needs identified for hydrogen and fission product issues need to be investigated in an integrated and optimized way. Additionally, as more and more passive safety systems, such as passive autocatalytic recombiners and filtered containment venting systems are being retrofitted in current reactors and also planned for future reactors, identified hydrogen and fission product issues will need to be coupled with the operation of passive safety systems in phenomena oriented and coupled effects experiments. In the present paper, potential hydrogen and fission product issues raised by the Fukushima accident are discussed. The discussion focuses on hydrogen and fission product behavior inside nuclear power plant containments under severe accident conditions. The relevant experimental investigations conducted in the technical scale containment THAI (thermal hydraulics, hydrogen, aerosols, and iodine) test facility (9.2 m high, 3.2 m in diameter, and $60m^3$ volume) are discussed in the light of the Fukushima accident.

Reliability Analysis of Sloped-Coastal Structures with Sea-Level Rise (해수면 상승에 따른 경사식 해안 구조물의 신뢰성 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.42-48
    • /
    • 2008
  • A system of risk assessment is developed by using the reliability analysis which evaluate quantitatively both stability and performance of sloped-coastal structures according to several scenarios of sea-level rise. By using reliability functions on armor unit and run-up, the probabilities of failure can be straightforwardly calculated with respect to several design parameters such as nominal diameter of armor unit, slope of coastal structure, and freeboard height. By comparing the results before and after sea-level rise, it may be possible to exactly assess some ranges of decrease of stability and performance of sloped-coastal structure with respect to sea-level rise. Therefore, it can also be possible to make a decision which parameters should be repaired or strengthened in order to maintain the original stability and performance of sloped-coastal structures. Finally, The present results may be useful for designing some kinds of new sloped-coastal structures including the effect of sea-level rise.

Simulation Modeling for Production Scheduling under Make-To-Order Production Environment : Focusing on the Flat Glass Production Environment (주문생산 방식의 생산계획 수립을 위한 시뮬레이션 모델 설계 : 판유리 제조 공정을 중심으로)

  • Choi, Yong-Hee;Hwang, Seung-June
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.64-73
    • /
    • 2019
  • The manufacturing companies under Make-To-Order (MTO) production environment face highly variable requirements of the customers. It makes them difficult to establish preemptive production strategy through inventory management and demand forecasting. Therefore, the ability to establish an optimal production schedule that incorporates the various requirements of the customers is emphasized as the key success factor. In this study, we suggest a process of designing the simulation model for establishing production schedule and apply this model to the case of a flat glass processing company. The flat glass manufacturing industry is under MTO production environment. Academic research of flat glass industry is focused on minimizing the waste in the cutting process. In addition, in the practical view, the flat glass manufacturing companies tend to establish the production schedule based on the intuition of production manager and it results in failure of meeting the due date. Based on these findings, the case study aims to present the process of drawing up a production schedule through simulation modeling. The actual data of Korean flat glass processing company were used to make a monthly production schedule. To do this, five scenarios based on dispatching rules are considered and each scenario is evaluated by three key performance indicators for delivery compliance. We used B2MML (Business To Manufacturing Markup Language) schema for integrating manufacturing systems and simulations are carried out by using SIMIO simulation software. The results provide the basis for determining a suitable production schedule from the production manager's perspective.

Direct analysis of steel frames with asymmetrical semi-rigid joints

  • Chan, Jake L.Y.;Lo, S.H.
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.99-112
    • /
    • 2019
  • Semi-rigid joints have been widely studied in literature in recent decades because they affect greatly the structural response of frames. In literature, the behavior of semi-rigid joints is commonly assumed to be identical under positive and negative moments which are obviously incorrect in many cases where joint details such as bolt arrangement or placement of haunch are vertically asymmetrical. This paper evaluates two common types of steel frames with asymmetrical beam-to-column joints by Direct Analysis allowing for plasticity. A refined design method of steel frames using a proposed simple forth order curved-quartic element with an integrated joint model allowing for asymmetrical geometric joint properties is presented. Furthermore, the ultimate behavior of six types of asymmetrical end-plate connections under positive and negative moment is examined by the Finite Element Method (FEM). The FEM results are further applied to the proposed design method with the curved-quartic element for Direct Analysis of two types of steel frames under dominant gravity or wind load. The ultimate frame behavior under the two different scenarios are examined with respect to their failure modes and considerably different structural performances of the frames were observed when compared with the identical frames designed with the traditional method where symmetrical joints characteristics were assumed. The finding of this research contributes to the design of steel frames as their asymmetrical beam-to-column joints lead to different frame behavior when under positive and negative moment and this aspect should be incorporated in the design and analysis of steel frames. This consideration of asymmetrical joint behavior is recommended to be highlighted in future design codes.

Stochastic analysis of the rocking vulnerability of irregular anchored rigid bodies: application to soils of Mexico City

  • Ramos, Salvador;Arredondo, Cesar;Reinoso, Eduardo;Leonardo-Suarez, Miguel;Torres, Marco A.
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.71-86
    • /
    • 2021
  • This paper focuses on the development and assessment of the expected damage for the rocking response of rigid anchored blocks, with irregular geometry and non-uniform mass distribution, considering the site conditions and the seismicity of Mexico City. The non-linear behavior of the restrainers is incorporated to evaluate the pure tension and tension-shear failure mechanisms. A probabilistic framework is performed covering a wide range of block sizes, slenderness ratios and eccentricities using physics-based ground motion simulation. In order to incorporate the uncertainties related to the propagation of far-field earthquakes with a significant contribution to the seismic hazard at study sites, it was simulated a set of scenarios using a stochastic summation methods of small-earthquakes records, considered as Empirical Green's Function (EGFs). As Engineering Demand Parameter (EDP), the absolute value of the maximum block rotation normalized by the body slenderness, as a function of the peak ground acceleration (PGA) is adopted. The results show that anchorages are more efficient for blocks with slenderness ratio between two and three, while slenderness above four provide a better stability when they are not restrained. Besides, there is a range of peak intensities where anchored blocks located in soft soils are less vulnerable with respect to those located in firm soils. The procedure used in here allows to take decisions about risk, reliability and resilience assessment of different types of contents, and it is easily adaptable to other seismic environments.

CSPACE for a simulation of core damage progression during severe accidents

  • Song, JinHo;Son, Dong-Gun;Bae, JunHo;Bae, Sung Won;Ha, KwangSoon;Chung, Bub-Dong;Choi, YuJung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3990-4002
    • /
    • 2021
  • CSPACE (Core meltdown, Safety and Performance Analysis CodE for nuclear power plants) for a simulation of severe accident progression in a Pressurized Water Reactor (PWR) is developed by coupling of verified system thermal hydraulic code of SPACE (Safety and Performance Analysis CodE for nuclear power plants) and core damage progression code of COMPASS (Core Meltdown Progression Accident Simulation Software). SPACE is responsible for the description of fluid state in nuclear system nodes, while COMPASS is responsible for the prediction of thermal and mechanical responses of core fuels and reactor vessel heat structures. New heat transfer models to each phase of the fluid, flow blockage, corium behavior in the lower head are added to COMPASS. Then, an interface module for the data transfer between two codes was developed to enable coupling. An implicit coupling scheme of wall heat transfer was applied to prevent fluid temperature oscillation. To validate the performance of newly developed code CSPACE, we analyzed typical severe accident scenarios for OPR1000 (Optimized Power Reactor 1000), which were initiated from large break loss of coolant accident, small break loss of coolant accident, and station black out accident. The results including thermal hydraulic behavior of RCS, core damage progression, hydrogen generation, corium behavior in the lower head, reactor vessel failure were reasonable and consistent. We demonstrate that CSPACE provides a good platform for the prediction of severe accident progression by detailed review of analysis results and a qualitative comparison with the results of previous MELCOR analysis.