• 제목/요약/키워드: failure rate of equipment

Search Result 133, Processing Time 0.027 seconds

Power Distribution System Equipment Failure Rate Analysis for Reliability Estimation (신뢰도 평가를 위한 배전계통 설비기기 고장률 분석)

  • Lee, Hee-Tae;Kim, Jae-Chul;Moon, Jong-Fil;Park, Chang-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.370-373
    • /
    • 2004
  • The inside and outside of the country utilities considered that they focused energy and economic aspect for short-term in new environment change of restructure. but it need service reliability preservation and improvement countermeasure, that is no to use existent estimation method for reliability preservation. therefore, analyze the equipment failure rate for suitable reliability preservation through equipment failure rate analysis of power distribution r system and evaluated equipment that is composing power distribution system by the failure rate. This paper estimated failure causes and the TVFR(Time Varying Failure Rate) for main equipment that is composing power distribution system using Weibull distribution.

  • PDF

Determining the Optimum Maintenance Period of the Steel Making Equipment Having Multiple Failure Types (다수의 고장유형을 갖는 제철설비의 최적 정비주기 산출)

  • Song, Hong-Jun;Jun, Chi-Hyuck
    • IE interfaces
    • /
    • v.16 no.1
    • /
    • pp.27-33
    • /
    • 2003
  • The maintenance cost in K Steelworks has been continuously increased in proportion to the production cost. However, there seems to be a possibility of reducing cost through the optimization of maintenance actions. The failure types of the equipment in steelworks ate various with different failure cost. Thus the failure rate and cost of each type of failures should be considered simultaneously when the optimum maintenance period is to be determined. It is considered that the equipment undergoes periodic replacement and a specified number of incomplete preventive maintenance actions are performed during a replacement period. Assuming that the time to failure follows a Weibull distribution, the parameters of the failure rate are estimated using the maximum likelihood estimation. The optimal replacement period is determined to minimize the average cost per unit time. As the result of analysis it is suggested that the existing maintenance period for a hot-rolling equipment can be extended significantly.

A Study on Failure Rate Extraction of Distribution System Equipment considering Regional Characteristics (지역특성을 고려한 배전설비 고장률 산출에 관한 연구)

  • Choi, Kyu-Wan;Chai, hui-Seok;Moon, Jong-Fil
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.199-203
    • /
    • 2016
  • The cost needed to managing equipment is constantly increasing because of increase of power equipment. The regulations such as PAS 55 and ISO 55000 were enacted to manage equipment assets. The advanced management methods such as real-time monitoring, condition evaluation, and health indices are avalable in generation system, transmission system, and substation transformers. However, These methods can not be applied to distribution equipment because of a lot of equipment. Therefore reliability assessment is very important in case of distribution equipment. In this paper, failure rates are extracted considering characteristics of regions, and which are the essential factors to reliability evaluation.

Analyzing of the Time varying failure rate of components of power distribution system using Weibull distribution (와이블 분포를 이용한 배전설비기기의 시변 고장률 분석)

  • Lee, Hee-Tae;Kim, Jae-Chul;Mon, Jong-Fil;Park, Chang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.272-274
    • /
    • 2003
  • Distribution system reliability evaluation estimates by approach methods such as Makove modelling or Monte Carlo simulation, equation of state and failure rate that is on one basic data used to these assessment technique is described as probability of average value. because average failure rate equipment device is aged as time goes by but there is shortcoming that such used failure rate does not evaluate thing which is correct in reliability change hereafter. In this paper, failure rate displayed that apply aging to basis equipment device by passing time using Weibull distribution one of life evaluation method and for express aging of component from utility's failure database.

  • PDF

Extraction of Time-varying Failure Rate for Power Distribution System Equipment (배전계통 설비의 시변 고장률 추출)

  • Moon, Jong-Fil;Lee, Hee-Tae;Kim, Jae-Chul;Park, Chang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.11
    • /
    • pp.548-556
    • /
    • 2005
  • Reliability evaluation of power distribution system is very important to both power utilities and customers. It present the probabilistic number and duration of interruption such as failure rate, SATDI, SAIFI, and CAIDI. However, it has a fatal weakness at reliability index because of accuracy of failure rate. In this paper, the Time-varying Failure Rate(TFR) of power distribution system equipment is extracted from the recorded failure data of KEPCO(Korea Electric Power Corporation) in Korea. For TFR extraction, it is used that the fault data accumulated by KEPCO during 10 years. The TFR is approximated to bathtub curve using the exponential(random failure) and Weibull(aging failure) distribution function. In addition, Kaplan-Meier estimation is applied to TFR extraction because of incomplete failure data of KEPCO. Finally, Probability plot and regression analysis is applied. It is presented that the extracted TFR is more effective and useful than Mean Failure Rate(MfR) through the comparison between TFR and MFR

Frequence Analysis for City Gas Pipeline (도시가스 배관의 설비손상확률평가)

  • Park Kyo-Shik;Lee Jin-Han;Jo Young-Do;Park Jin-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.2 s.19
    • /
    • pp.14-21
    • /
    • 2003
  • Frequency analysis of city gas pipeline was studied and then the method to give frequencies of failure by the third-party digging, corrosion, ground movement, and equipment failure which were known to be the major cause of risk of city gas pipeline. The failure by the third-party digging was analyzed by fault tree analysis and the failure by corrosion was analyzed by applying equation calculating remaining strength with time. The failure by ground movement was evaluated by applying modified model which was induced through weighing factors with basic failure rate model. The failure rate of equipment was calculated with both generic and specific data

  • PDF

Measurement of Time-Varying Failure Rate for Power Distribution System Equipment Considering Weather Factor (기후인자를 고려한 배전계통 설비의 시변 고장률 추정)

  • Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.14-20
    • /
    • 2009
  • In this paper, the time-varying failure rate to consider climate effect was extracted. Even if the same kind of equipments is estimated for extracting the time-varying failure rate, the failure rates could be different depending on external effect such as climate. With the consequence, the failure rate extracted to consider the climate effect is necessary for using the failure rate on the optimal investment plan or asset management, To consider the characteristic of climate effects(Classified into 5 categories, heavy rain, thunderbolt, strong wind, tidal waves, no character), the survey of officers charging the operation of equipment in KEPCO branch office was done. With this consequence, this paper suggest the failure rate extraction method to consider the climate effect analyzed by the survey.

A Study on Failure Rate Extraction of Power Distribution System Equipment (배전기기 고장률 추출에 관한 연구)

  • Moon, Jong-Fil;Kim, Jae-Chul;Lee, Hee-Tae;Chu, Cheol-Min;Ahn, Jae-Min
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.366-368
    • /
    • 2007
  • In this paper, the Time-varying Failure Rate (TFR) of power distribution system equipment is extracted from the recorded failure data of Korea Electric Power Corporation (KEPCO). For TFR extraction, it is used that the fault data accumulated by KEPCO during 10 years. The TFR is approximated to bathtub curve using the exponential (random failure) and Weibull (aging failure) distribution function. In addition, Kaplan-Meier estimation is applied to TFR extraction because of incomplete failure data of KEPCO. Finally, Probability plot and regression analysis is applied. It is presented that the extracted TFR is more effective and useful than Mean Failure Rate (MFR) through the comparison between TFR and MFR.

  • PDF

Deciding the Maintenance Priority of Power Distribution System using Time-varying Failure Rate (시변 고장률을 이용한 배전계통 유지보수 우선순위 결정)

  • Lee, Hee-Tae;Moon, Jong-Fil;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.11
    • /
    • pp.476-484
    • /
    • 2006
  • The failure prediction and preventive maintenance for the equipment of nuclear power plant area using reliability-centered maintenance have been grown. On the other hand, the maintenance for power distribution system consists of time-based maintenance mainly. In this paper, the new maintenance algorithms for power distribution system are developed considering reliability indices. First of all, Time-varying failure rates are extracted from data accumulated at KEPCO using exponential distribution function and weibull distribution function. Next, based on the extracted failure rate, reliability for real power distribution system is evaluated for applying the effective maintenance algorithm which is the analytic method deciding the maintenance point of time and searching the feeder affecting the specific customer. Also the algorithm deciding the maintenance priority order are presented based on sensitivity analysis and equipment investment plan are analyzed through the presented algorithm at real power distribution system.

Making Decision of the Maintenance Priority of Power Distribution System using Time Varying Failure Rate and Interruption Cost

  • Chu, Cheol-Min;Kim, Jae-Chul;Yun, Sang-Yun
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • The purpose of the this paper is to make decision of the maintenance priority of power distribution system using Time-Varying Failure Rate(TVFR) with interruption cost. This paper emphasizes the practical use of the reliability indices and interruption cost. To make a decision of maintenance priority on power distribution system equipment, the quantification of the reliability level should be represented as a cost. In this paper, the TVFR of power distribution system equipment applied in this paper utilizes analytic method to use the historical data of KEPCO. From this result, the sensitivity analysis on TVFR of equipment was done for the priority, which represents that high priority of the equipment has more effect on system reliability, such as SAIDI or SAIFI, than other equipment. By this priority, the investment plan is established. In this result, customer interruption cost(CIC) could be extracted, and CIC is used as weighting factor to consider a importance of customer. After that, the result calculated the proposal method in this paper is compared with other priority method, such as lifetime, failure rate or only sensitivity.