• Title/Summary/Keyword: failure rate estimation

Search Result 147, Processing Time 0.024 seconds

Diagnosis of Compressor Failure by Fault Tree Analysis (FTA기법을 이용한 콤프레서 고장진단)

  • 배용환;이석희;최진원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.127-138
    • /
    • 1994
  • The application of fault tree technique to the analysis of compressor failure is considered. The techniques involve the decomposition of the system into a form of fault tree where certain basic events lead to a specified top event which signifies the total failure of the system. In this paper, fault trees are made by using fault train of screw type air compressor failure. The fault trees are used to obtain minimal cut sets from the modes of system failure and, hence the system failure rate for the top event can be calculated. The method of constructing fault trees and the subsequent estimation of reliability of the system is illustrated through compressor failure. It is proved that FTA is efficient to investigate the compressor failure modes and diagnose system.

Reliability Estimation of the Standard Electric Multiple Unit (표준 전동차의 신뢰성 평가)

  • 구병춘;김남포
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.330-335
    • /
    • 2002
  • To estimate the reliability of the standard electric multiple unit developed by Korea Railroad Research Institute, the vehicle system composed of 4 cars is divided into 14 subsystems. The 14 subsystems are connected in series. For each subsystem except for car body and bogie, failure rate is evaluated by an optimal failure model used in reliability engineering. For car body and bogie probabilistic structural integrity analysis is carried out. The distribution of failure rate of each part and system is assumed to be exponential. The estimated MTBF of the vehicle satisfies the planned MTBF.

  • PDF

Estimating the Population Variability Distribution Using Dependent Estimates From Generic Sources (종속적 문헌 추정치를 이용한 모집단 변이 분포의 추정)

  • 임태진
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.3
    • /
    • pp.43-59
    • /
    • 1995
  • This paper presents a method for estimating the population variability distribution of the failure parameter (failure rate or failure probability) for each failure mode considered in PSA (Probabilistic Safety Assessment). We focus on the utilization of generic estimates from various industry compendia for the estimation. The estimates are complicated statistics of failure data from plants. When the failure data referred in two or more sources are overlapped, dependency occurs among the estimates provided by the sources. This type of problem is first addressed in this paper. We propose methods based on ML-II estimation in Bayesian framework and discuss the characteristics of the proposed estimators. The proposed methods are easy to apply in real field. Numerical examples are also provided.

  • PDF

A Study on Safety Assessment of CTC/EI Interface (열차집중제어장치와 전자연동장치 인터페이스의 안전성평가에 관한 연구)

  • SHIN Seok-kyun;LEE Key-seo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.7
    • /
    • pp.309-316
    • /
    • 2005
  • In this paper we analyzed a dangerous failure and a safety requirement based on HIA (Hazard Identification and Analysis) of an interface model between CTC (Centralized Traffic Control) system and El (Interlocking) system, and assigned SU (Safety Integrity Level) by way of an risk estimation of the interface, which employed PHA (Preliminary Hazard Analysis) for the interface of the track control system, being managed as separated system between the centralized traffic control system and the interlocking system, An estimation which satisfies a safety reference of the international standard has been achieved through a quantification of the system failure rate and the dangerous failure rate of the interface model.

Estimation of parameters including a quadratic failure rate semi-Markov reliability model

  • El-Gohary, A.;Alshamrani, A.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.1
    • /
    • pp.1-14
    • /
    • 2011
  • This paper discusses the stochastic analysis and the statistical inference of a quadratic failure rate semi-Markov reliability model. Maximum likelihood procedure will be used to obtain the estimators of the parameters included in this reliability model. Based on the assumption that the lifetime and repair time of the system units are random variables with quadratic failure rate, the reliability function of this system is obtained. Also, the distribution of the first passage time of this system is derived. Many important special cases are discussed.

  • PDF

Reliability Evaluation of Power Distribution System Considering Maintenance Effects (유지보수 영향을 고려한 배전계통 신뢰도 평가)

  • Moon, Jong-Fil;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.154-157
    • /
    • 2010
  • In this paper, the Time-varying Failure Rates(TFR) of power distribution system components are extracted from the recorded failure data of KEPCO(Korea Electric Power Corporation) and the reliability of power distribution system is evaluated using Mean Failure Rate(MFR) and TFR. The TFR is approximated to bathtub curve using the exponential and Weibull distribution function. In addition, Kaplan-Meier estimation is applied to TFR extraction because of incomplete failure data of KEPCO. Also the reliability of the real power distribution system of Korea is evaluated using the MFR and TFR extracted from real failure data, respectively and the results of each case are compared with each other. As a result, it is proved that the reliability evaluation using the TFR is more realistic than MFR. In addition, it is presented that the application method at power distribution system maintenance and repair using the result of TFR.

Recommendation of I-D Criterion for Steep-Slope Failure Estimation Considering Rainfall Infiltration Mechanism (강우침투 메커니즘을 이용한 급경사지 붕괴예측 I-D 기준식 제안)

  • Song, Young-Karb;Kim, Young-Uk;Kim, Dong-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.65-74
    • /
    • 2013
  • The natural disaster occurrences and the loss of lives caused by the steep-slope failures in Korea were investigated in this study. The investigation includes the frequency rate of the steep-slope failures with respect to the characteristics of precipitation, underlying bedrock, and weathered soils. Analysis on the problems in the existing estimation methods of steep-slope failure was also undertaken, and a new model using unsaturated infinite slope stability was developed for the better slope failure estimation. The slope analyses by the newly developed model were performed considering unsaturated infinite slope, the gradient of slope, and hydro/mechanical properties of soils. Steep-slope failure estimation criterion is proposed based on the analysis results. In addition, the precipitation amount corresponding to warning stages against steep-slope failure is provided as an equation of Intensity-Duration criterion.

Determining the Optimum Maintenance Period of the Steel Making Equipment Having Multiple Failure Types (다수의 고장유형을 갖는 제철설비의 최적 정비주기 산출)

  • Song, Hong-Jun;Jun, Chi-Hyuck
    • IE interfaces
    • /
    • v.16 no.1
    • /
    • pp.27-33
    • /
    • 2003
  • The maintenance cost in K Steelworks has been continuously increased in proportion to the production cost. However, there seems to be a possibility of reducing cost through the optimization of maintenance actions. The failure types of the equipment in steelworks ate various with different failure cost. Thus the failure rate and cost of each type of failures should be considered simultaneously when the optimum maintenance period is to be determined. It is considered that the equipment undergoes periodic replacement and a specified number of incomplete preventive maintenance actions are performed during a replacement period. Assuming that the time to failure follows a Weibull distribution, the parameters of the failure rate are estimated using the maximum likelihood estimation. The optimal replacement period is determined to minimize the average cost per unit time. As the result of analysis it is suggested that the existing maintenance period for a hot-rolling equipment can be extended significantly.

The Case Study on Application of Software Reliability Analysis Model by Utilizing Failure History Data of Weapon System (무기체계의 고장 이력 데이터를 활용한 소프트웨어 신뢰도 분석 모델 적용 사례 연구)

  • Cho, Ilhoon;Hwang, Seongguk;Lee, Ikdo;Park, Yeonkyeong;Lee, Junghoon;Shin, Changhoon
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.296-304
    • /
    • 2017
  • Purpose: Recent weapon systems in defense have increased the complexity and importance of software when developing multifunctional equipment. In this study, we analyze the accuracy of the proposed software reliability model when applied to weapon systems. Methods: Determine the similarity between software reliability analysis results (prediction/estimation) utilizing data from developing weapon systems and system failures data during operation of weapon systems. Results: In case of a software reliability prediction model, the predicted failure rate was higher than the actual failure rate, and the estimation model was consistent with actual failure history data. Conclusion: The software prediction model needs to adjust the variables that are appropriate for the domestic weapon system environment. As the reliability of software is increasingly important in the defense industry, continuous efforts are needed to ensure accurate reliability analysis in the development of weapon systems.

Analysis of Operational Availability under Changing Failure Rate and Supportability (무기체계의 고장률과 지원수준의 변화에 따른 운용가용도 변화 분석)

  • Tak, Jung Ho;Jung, Won
    • Journal of Applied Reliability
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • Purpose: Maintaining appropriate operational availability (Ao) is a key element of combat victory, but estimates vary according to estimation methods. The purpose of this study is to improve the accuracy of estimating operational availability by tracing the changes of the weapon system's failure rate, repair rate, and the level of logistic support. Methods: In order to track the change in the operating availability, the MDT (mean down time) is modeled by adding the repair time and the ALDT (administration and logistic delay time) to the service time. Results: Using the field data of the weapon system A operated by the ROKAF, the failure rate follows a non-homogeneous Poisson process that changes with time, and it is modeled considering the changing repair rate and the logistic support time. Conclusion: The accuracy of the analytical results was verified by comparing the actual operating data with the estimated availability. The results of this study can be used to track and evaluate the availability in a realistic situation where the failure rate and maintenance rate continuously change in operating environment.